根据此链接,keep_prob 的值必须在 (0,1] 之间: Tensorflow 手册
否则我会得到价值错误:
ValueError: If keep_prob is not in (0, 1] or if x is not a floating point tensor.
我将以下代码用于具有一个隐藏层的简单神经网络:
n_nodes_input = len(train_x.columns) # number of input features
n_nodes_hl = 30 # number of units in hidden layer
n_classes = len(np.unique(Y_train_numeric))
lr = 0.25
x = tf.placeholder('float', [None, len(train_x.columns)])
y = tf.placeholder('float')
dropout_keep_prob = tf.placeholder(tf.float32)
def neural_network_model(data, dropout_keep_prob):
# define weights and biases for all each layer
hidden_layer = {'weights':tf.Variable(tf.truncated_normal([n_nodes_input, n_nodes_hl], stddev=0.3)),
'biases':tf.Variable(tf.constant(0.1, shape=[n_nodes_hl]))}
output_layer = {'weights':tf.Variable(tf.truncated_normal([n_nodes_hl, n_classes], stddev=0.3)),
'biases':tf.Variable(tf.constant(0.1, shape=[n_classes]))}
# feed forward and activations
l1 = tf.add(tf.matmul(data, hidden_layer['weights']), hidden_layer['biases'])
l1 = tf.nn.sigmoid(l1)
l1 = tf.nn.dropout(l1, dropout_keep_prob)
output = tf.matmul(l1, output_layer['weights']) + output_layer['biases']
return output
def main():
prediction = neural_network_model(x, dropout_keep_prob)
cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=y,logits=prediction))
optimizer = tf.train.AdamOptimizer(lr).minimize(cost)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
for epoch in range(1000):
loss = 0
_, c = sess.run([optimizer, cost], feed_dict = {x: train_x, y: train_y, dropout_keep_prob: 4.})
loss += c
if (epoch % 100 == 0 and epoch != 0):
print('Epoch', epoch, 'completed out of', 1000, 'Training loss:', loss)
correct = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32), name='op_accuracy')
writer = tf.summary.FileWriter('graph',sess.graph)
writer.close()
print('Train set Accuracy:', sess.run(accuracy, feed_dict = {x: train_x, y: train_y, dropout_keep_prob: 1.}))
print('Test set Accuracy:', sess.run(accuracy, feed_dict = {x: test_x, y: test_y, dropout_keep_prob: 1.}))
sess.close()
if __name__ == '__main__':
main()
如果我在 sess.run 中对 dropout_keep_prob 使用范围 (0,1] 内的数字,则精度会急剧下降。如果我使用大于 1 的数字,例如 4,则精度会超过 0.9。一旦我在在 tf.nn.dropout() 的前面,这是作为描述的一部分编写的:
With probability `keep_prob`, outputs the input element scaled up by
`1 / keep_prob`, otherwise outputs `0`. The scaling is so that the expected
sum is unchanged.
在我看来,keep_prob 必须大于 1,否则不会丢弃任何东西!
归根结底,我很困惑。我实施了错误的 dropout 的哪一部分,我的结果越来越差,keep_drop 的好数字是多少?
谢谢