还有另一种应用简单功能的方法,尽管它并不比使用 for 循环更好。lapply
在应用距离函数之前,您可以先创建一个简单特征列表。
distance.func <- function(polygon){
max(st_distance(st_cast(polygon, "POINT"), st_centroid(polygon)))
}
distance.func.ls_sf <- function(sf){
ls_sf <- lapply(1:nrow(sf), function(x, sf) {sf[x,]}, sf)
dist <- lapply(ls_sf, distance.func)
}
dist_lapply_ls_sf <- distance.func.ls_sf(nc)
all.equal(dist, dist_lapply_ls_sf)
# [1] TRUE
性能几乎与 for 循环一样差......甚至似乎 4 年后(现在 R 4.1.1 和 sf 1.0-3),它几乎lapply
比map
使用st_geometry(nc)
. ..
microbenchmark::microbenchmark(
forloop = {for (i in seq_along(nc[[1]])) dist[[i]] <- distance.func(nc[i,])},
map = {dist_map <- purrr::map(st_geometry(nc), distance.func_lapply)},
lapply = {dist_lapply <- lapply(st_geometry(nc), distance.func_lapply)},
ls_sf = {dist_lapply_ls_sf <- distance.func.ls_sf(nc)},
times = 10)
Unit: milliseconds
expr min lq mean median uq max neval
forloop 7726.9337 7744.7534 7837.6937 7781.2301 7850.7447 8221.2092 10
map 124.1067 126.2212 135.1502 128.4745 130.2372 182.1479 10
lapply 122.0224 125.6585 130.6488 127.9388 134.1495 147.9301 10
ls_sf 7722.1066 7733.8204 7785.8104 7775.5011 7814.3849 7911.3466 10
所以这是一个糟糕的解决方案,除非你应用到简单特征对象的函数比st_distance()
.
如果需要属性怎么办?
如果您的函数需要 sf 对象的几何和属性部分,那么 usingmapply
是一个不错的方法。以下是使用三种方法计算婴儿猝死密度 (SID/km²) 的示例:
for
- 在使用之前提取每个特征
lapply
mapply
microbenchmark::microbenchmark(
forLoop =
{
sid.density.for <- vector("list", nrow(nc))
for (i in seq(nrow(nc))) sid.density.for[[i]] <- nc[i,][["SID74"]] / st_area(nc[i,]) / 1000^2
},
list_nc =
{
list_nc <- lapply(seq(nrow(nc)), function(x, nc) { nc[x,] }, nc)
sid.density.lapply <- lapply(list_nc, function(x) { x[["SID74"]] / as.numeric(st_area(x)) / 1000^2 })
},
mapply =
{
sid.density.func <- function(geometry, attribute) { attribute / st_area(geometry) / 1000^2 }
sid.density.mapply <- mapply(sid.density.func, st_geometry(nc), nc[["SID74"]], SIMPLIFY = FALSE)
},
times = 10)
Unit: milliseconds
expr min lq mean median uq max neval
forLoop 4511.7203 4515.5997 4557.73503 4542.75200 4560.5508 4707.2877 10
list_nc 4356.3801 4400.5640 4455.35743 4440.38775 4475.2213 4717.5218 10
mapply 17.4783 17.6885 18.20704 17.99295 18.3078 20.1121 10