2

我正在使用带有 Open CV 的 TF 对象检测 API。

如何提取视频检测到的对象类型并将其复制到 .txt 文件中?

例如,一旦对象检测 API 中的视频检测到“手机”,我如何将“手机”写入单独的文本文件?

这是供参考的代码:

import sys
sys.executable
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile

from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image

sys.path.append('/usr/local/lib/python2.7/site-packages')
import cv2

cap = cv2.VideoCapture(0)


# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")


# ## Object detection imports
# Here are the imports from the object detection module.

# In[3]:

from utils import label_map_util

from utils import visualization_utils as vis_util


# # Model preparation 

# ## Variables
# 
# Any model exported using the `export_inference_graph.py` tool can be loaded here simply by changing `PATH_TO_CKPT` to point to a new .pb file.  
# 
# By default we use an "SSD with Mobilenet" model here. See the [detection model zoo](https://github.com/tensorflow/models/blob/master/object_detection/g3doc/detection_model_zoo.md) for a list of other models that can be run out-of-the-box with varying speeds and accuracies.

# In[4]:

# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'

# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')

NUM_CLASSES = 90


# ## Download Model

# In[5]:

opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
  file_name = os.path.basename(file.name)
  if 'frozen_inference_graph.pb' in file_name:
    tar_file.extract(file, os.getcwd())


# ## Load a (frozen) Tensorflow model into memory.

# In[6]:

detection_graph = tf.Graph()
with detection_graph.as_default():
  od_graph_def = tf.GraphDef()
  with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
    serialized_graph = fid.read()
    od_graph_def.ParseFromString(serialized_graph)
    tf.import_graph_def(od_graph_def, name='')


# ## Loading label map
# Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`.  Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine

# In[7]:

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)


# ## Helper code

# In[8]:

def load_image_into_numpy_array(image):
  (im_width, im_height) = image.size
  return np.array(image.getdata()).reshape(
      (im_height, im_width, 3)).astype(np.uint8)


# # Detection

# In[9]:

# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]

# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)

# In[10]:

with detection_graph.as_default():
  with tf.Session(graph=detection_graph) as sess:
    while True:
      ret, image_np = cap.read()
      # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
      image_np_expanded = np.expand_dims(image_np, axis=0)
      image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
      # Each box represents a part of the image where a particular object was detected.
      boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
      # Each score represent how level of confidence for each of the objects.
      # Score is shown on the result image, together with the class label.
      scores = detection_graph.get_tensor_by_name('detection_scores:0')
      classes = detection_graph.get_tensor_by_name('detection_classes:0')
      num_detections = detection_graph.get_tensor_by_name('num_detections:0')
      # Actual detection.
      (boxes, scores, classes, num_detections) = sess.run(
          [boxes, scores, classes, num_detections],
          feed_dict={image_tensor: image_np_expanded})
      # Visualization of the results of a detection.
      vis_util.visualize_boxes_and_labels_on_image_array(
          image_np,
          np.squeeze(boxes),
          np.squeeze(classes).astype(np.int32),
          np.squeeze(scores),
          category_index,
          use_normalized_coordinates=True,
          line_thickness=8)

      cv2.imshow('object detection', cv2.resize(image_np, (800,600)))
      if cv2.waitKey(25) & 0xFF == ord('q'):
        cv2.destroyAllWindows()
        break

在此先感谢您的帮助!

4

3 回答 3

4

您可以通过使用可视化.py 类中的draw_bounding_box_on_image函数(第 118 行)内部的“ display_str_list[0] ”以字符串形式获取检测到的对象的名称。

例如,您可以在控制台上显示检测到的对象的名称;

print(display_str_list[0])

您应该将它放在draw_bounding_box_on_image函数中(第 118 行)。

于 2018-01-30T13:25:36.197 回答
0

使用 IDE ATOM 行号:131 没有任何缩进,在 object_detection->utils->visulization_utils.py 中的 visual_utils.py 中放置“print(display_str_list[0])”。例如,这将检索检测到的对象的标签 屏幕截图的文本

于 2019-03-07T18:19:44.497 回答
0

感谢奥兹卢,

对于像我这样的新用户,您要查找的文件位于:

/models/research/object_detection/utils/visualization_utils.py

tensorflow 1.12.0的行是从 124 到 156。我把它放在 152 中。

我刚刚尝试过,并且可以正常工作!

于 2019-07-24T20:11:50.877 回答