您好,我正在使用 pandas 从两个 excel 文件中导入数据,其中一个文件中包含的数据示例如下所示。基本上,我试图找到两个文件中相同的时间戳,然后将例如“电源”列中的数据排序,该列对应于两个文件中的相同时间戳到一些垃圾箱中。此示例中的 bin 从 0-50、50-100 等以 50 到例如 1000 的间隔
1. Location UnitName Timestamp Power Windspeed Yaw
2. Bull Creek F10 01/11/2014 00:00:00 7,563641548 3,957911002 280,5478821
3. Bull Creek F10 01/11/2014 00:20:00 60,73444748 4,24157236 280,4075012
4. Bull Creek F10 01/11/2014 00:30:00 63,15441132 4,241089859 280,3903809
5. Bull Creek F10 01/11/2014 00:40:00 59,09280396 4,38904965 280,4152527
6. Bull Creek F10 01/11/2014 00:50:00 69,26197052 4,374599175 280,3750916
7. Bull Creek F10 01/11/2014 01:00:00 101,0624237 5,343887005 280,5173035
8. Bull Creek F10 01/11/2014 01:10:00 122,7936935 5,183885235 280,4681702
9. Bull Creek F10 01/11/2014 01:20:00 86,57110596 5,046733923 280,3834534
10. Bull Creek F10 01/11/2014 01:40:00 16,74042702 3,024427626 280,1408386
11. Bull Creek F10 01/11/2014 01:50:00 12,5870142 2,931351769 280,1185913
12. Bull Creek F10 01/11/2014 02:00:00 -1,029753685 3,116549245 279,9686279
13. Bull Creek F10 01/11/2014 02:10:00 13,35998058 3,448055706 279,8687134
14. Bull Creek F10 01/11/2014 02:20:00 17,42461395 2,943588415 280,1383057
15. Bull Creek F10 01/11/2014 02:30:00 -9,614940643 2,744164819 280,6514893
16. Bull Creek F10 01/11/2014 02:50:00 -11,01966286 3,554833538 283,1451416
17. Bull Creek F10 01/11/2014 03:00:00 -4,383010387 4,279259377 283,3281555
我想知道是否有比我到目前为止所制定的更智能的方法来做到这一点,因为箱的大小和最大值可能会改变。但这是我拥有的代码,它可以工作但不是很聪明。
import pandas as pd
fileREF = 'FilterDataREF.xlsx'
dataREF = pd.read_excel(fileREF, sheetname='Sheet1')
filePCU = 'FilterDataPCU.xlsx'
dataPCU = pd.read_excel(filePCU, sheetname='Ark1')
dateREF = dataREF['Timestamp']
datePCU = dataPCU['Timestamp']
n = 50
PowerLim = 1500
nBins = PowerLim/n
bins = range(0, PowerLim+1, n)
for i in range(len(dataREF)):
for j in range(len(dataPCU)):
if dataREF['Timestamp'][i] == dataPCU['Timestamp'][j] and
dataREF['Power'][i] > 0 and dataPCU['Power'][j] > 0:
data_common = [dataREF.loc[i], dataPCU.loc[j]]
data_power = [data_common[0][3], data_common[1][3]]
power_dif = data_common[1][3]-data_common[0][3]
power_REF = data_power[:][0]
power_PCU = data_power[:][1]
bin1 = power_REF[power_REF < 50]
bin2 = power_REF[power_REF > 50 and power_REF < 100]
bin3 = power_REF[power_REF > 100 and power_REF < 150]