我有一个数据框,其中包含以下格式的观察结果:
(我的实际数据有比这更多的列,但为了清楚起见,这些是重要的)
head(sampleDF, 20)
Timestamp TimeIntoSession CorrelationGuid Position_x Position_z
1 11/22/2017 11:12:30 AM 1234.331 714e8a89-91a5-415b-b102-6ed5c0cf9f44 5.166 4.947
2 11/22/2017 11:12:30 AM 1234.397 714e8a89-91a5-415b-b102-6ed5c0cf9f44 5.155 4.902
3 11/22/2017 11:12:30 AM 1234.464 714e8a89-91a5-415b-b102-6ed5c0cf9f44 5.144 4.858
4 11/22/2017 11:12:30 AM 1234.547 714e8a89-91a5-415b-b102-6ed5c0cf9f44 5.133 4.810
5 11/22/2017 11:12:30 AM 1234.614 714e8a89-91a5-415b-b102-6ed5c0cf9f44 5.125 4.777
6 11/22/2017 11:12:30 AM 1234.697 714e8a89-91a5-415b-b102-6ed5c0cf9f44 5.118 4.741
7 11/22/2017 11:12:30 AM 1234.764 714e8a89-91a5-415b-b102-6ed5c0cf9f44 5.114 4.714
8 11/22/2017 11:12:30 AM 1234.847 714e8a89-91a5-415b-b102-6ed5c0cf9f44 5.114 4.683
9 11/22/2017 11:12:30 AM 1234.914 714e8a89-91a5-415b-b102-6ed5c0cf9f44 5.119 4.661
10 11/22/2017 11:12:30 AM 1234.997 714e8a89-91a5-415b-b102-6ed5c0cf9f44 5.128 4.639
11 11/22/2017 11:12:30 AM 327.341 22f2f3bd-0750-4ccb-a5fc-e8f8a83d06f6 3.105 4.099
12 11/22/2017 11:12:30 AM 327.480 22f2f3bd-0750-4ccb-a5fc-e8f8a83d06f6 3.104 4.100
13 11/22/2017 11:12:30 AM 327.557 22f2f3bd-0750-4ccb-a5fc-e8f8a83d06f6 3.103 4.100
14 11/22/2017 11:12:30 AM 327.640 22f2f3bd-0750-4ccb-a5fc-e8f8a83d06f6 3.103 4.099
15 11/22/2017 11:12:30 AM 327.723 22f2f3bd-0750-4ccb-a5fc-e8f8a83d06f6 3.103 4.099
16 11/22/2017 11:12:30 AM 327.807 22f2f3bd-0750-4ccb-a5fc-e8f8a83d06f6 3.103 4.098
17 11/22/2017 11:12:30 AM 327.890 22f2f3bd-0750-4ccb-a5fc-e8f8a83d06f6 3.102 4.097
18 11/22/2017 11:12:30 AM 327.957 22f2f3bd-0750-4ccb-a5fc-e8f8a83d06f6 3.101 4.096
19 11/22/2017 11:12:30 AM 328.040 22f2f3bd-0750-4ccb-a5fc-e8f8a83d06f6 3.099 4.095
20 11/22/2017 11:12:30 AM 328.123 22f2f3bd-0750-4ccb-a5fc-e8f8a83d06f6 3.096 4.094
对于特定 CorrelationGuid 中的每一行,我想找到由当前行中的 X 和 Z 值定义的位置的欧几里德范数与前一行的欧几里得范数之间的差异。
我可以像这样对整个数据框执行此操作:
norm_vec <- function(x,y) sqrt(x^2 + y^2)
sampleMag<- mutate(sampleDF, sqMag = norm_vec(Position_x, Position_z) - norm_vec(lag(Position_x, default = 0), lag(Position_z, default = 0)))
但这会给每一行带来差异;我想在每个 CorrelationGuid 中执行此操作;也就是说,我不希望新的 CorrelationGuid 的第一行在进行计算时查看之前的 CorrelationGuid 的最后一行。
我可以像这样尝试一个 CorrelationGuid:
sampleMag<- mutate(sampleDF, sqMag = ifelse(CorrelationGuid == "714e8a89-91a5-415b-b102-6ed5c0cf9f44",
(norm_vec(Position_x, Position_z) - norm_vec(lag(Position_x, default = 0), lag(Position_z, default = 0))), NA))
但这并不是我真正想要的。我想为每个CorrelationGuid 执行此操作,并且除了一个之外没有其他的 NA。
我可以使用 unique() 或 distinct() 轻松生成唯一 CorrelationGuid 值的列表,但是为每个唯一 CorrelationGuid 运行一次上述逻辑的最佳方法是什么?
我可以找到每个 CorrelationGuid 的第一个和最后一个实例,然后循环遍历它,但是这里的 for 循环会非常慢,尤其是在大型数据集上执行此操作时。
apply 似乎很合适,但我不确定如何在这里最好地使用它。