1

我有一个包含 59536 列和 200 行的大型训练模型,我想使用 tensorflow 的 cnn 进行训练,但我遇到了OutOfMemory错误。如何拆分我的模型(将其拆分为较小的列)并进行小批量训练?
这是我的代码

# Create the Estimator
  mnist_classifier = tf.estimator.Estimator(
  model_fn=cnn_model_fn, model_dir="path/to/model")

# Load the data
  train_input_fn = tf.estimator.inputs.numpy_input_fn(
  x={"x": np.array(training_set.data)},
  y=np.array(training_set.target),
  num_epochs=None,
  batch_size=5, # I added this option but it seems to split my model by lines, I need to split it by column
  shuffle=True)

# Train the model
  mnist_classifier.train(
  input_fn=train_input_fn,
  steps=100,
  hooks=[logging_hook])
4

0 回答 0