(python、机器学习和 TensorFlow 的完全新手)
我正在尝试将TensorFlow 线性模型教程从他们的官方文档改编为 ICU 机器学习存储库中的鲍鱼数据集。目的是从其他给定数据中猜测鲍鱼的年轮(年龄)。
运行以下程序时,我得到以下信息:
File "/home/lawrence/tensorflow3.5/lib/python3.5/site-packages/tensorflow /python/ops/lookup_ops.py", line 220, in lookup
(self._key_dtype, keys.dtype))
TypeError: Signature mismatch. Keys must be dtype <dtype: 'string'>, got <dtype: 'int32'>.
该错误在第 220 行的 lookup_ops.py 中被抛出,并记录为在以下情况下抛出:
Raises:
TypeError: when `keys` or `default_value` doesn't match the table data types.
从调试parse_csv()
来看,似乎所有张量都是用正确的类型创建的。
你能解释一下出了什么问题吗?我相信我正在遵循教程代码逻辑并且无法弄清楚这一点。
源代码:
import tensorflow as tf
import shutil
_CSV_COLUMNS = [
'sex', 'length', 'diameter', 'height', 'whole_weight',
'shucked_weight', 'viscera_weight', 'shell_weight', 'rings'
]
_CSV_COLUMN_DEFAULTS = [['M'], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0]]
_NUM_EXAMPLES = {
'train': 3000,
'validation': 1177,
}
def build_model_columns():
"""Builds a set of wide feature columns."""
# Continuous columns
sex = tf.feature_column.categorical_column_with_hash_bucket('sex', hash_bucket_size=1000)
length = tf.feature_column.numeric_column('length', dtype=tf.float32)
diameter = tf.feature_column.numeric_column('diameter', dtype=tf.float32)
height = tf.feature_column.numeric_column('height', dtype=tf.float32)
whole_weight = tf.feature_column.numeric_column('whole_weight', dtype=tf.float32)
shucked_weight = tf.feature_column.numeric_column('shucked_weight', dtype=tf.float32)
viscera_weight = tf.feature_column.numeric_column('viscera_weight', dtype=tf.float32)
shell_weight = tf.feature_column.numeric_column('shell_weight', dtype=tf.float32)
base_columns = [sex, length, diameter, height, whole_weight,
shucked_weight, viscera_weight, shell_weight]
return base_columns
def build_estimator():
"""Build an estimator appropriate for the given model type."""
base_columns = build_model_columns()
return tf.estimator.LinearClassifier(
model_dir="~/models/albones/",
feature_columns=base_columns,
label_vocabulary=_CSV_COLUMNS)
def input_fn(data_file, num_epochs, shuffle, batch_size):
"""Generate an input function for the Estimator."""
assert tf.gfile.Exists(data_file), (
'%s not found. Please make sure you have either run data_download.py or '
'set both arguments --train_data and --test_data.' % data_file)
def parse_csv(value):
print('Parsing', data_file)
columns = tf.decode_csv(value, record_defaults=_CSV_COLUMN_DEFAULTS)
features = dict(zip(_CSV_COLUMNS, columns))
labels = features.pop('rings')
return features, labels
# Extract lines from input files using the Dataset API.
dataset = tf.data.TextLineDataset(data_file)
if shuffle:
dataset = dataset.shuffle(buffer_size=_NUM_EXAMPLES['train'])
dataset = dataset.map(parse_csv)
# We call repeat after shuffling, rather than before, to prevent separate
# epochs from blending together.
dataset = dataset.repeat(num_epochs)
dataset = dataset.batch(batch_size)
iterator = dataset.make_one_shot_iterator()
features, labels = iterator.get_next()
return features, labels
def main(unused_argv):
# Clean up the model directory if present
shutil.rmtree("/home/lawrence/models/albones/", ignore_errors=True)
model = build_estimator()
# Train and evaluate the model every `FLAGS.epochs_per_eval` epochs.
for n in range(40 // 2):
model.train(input_fn=lambda: input_fn(
"/home/lawrence/abalone.data", 2, True, 40))
results = model.evaluate(input_fn=lambda: input_fn(
"/home/lawrence/abalone.data", 1, False, 40))
# Display evaluation metrics
print('Results at epoch', (n + 1) * 2)
print('-' * 60)
for key in sorted(results):
print('%s: %s' % (key, results[key]))
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run(main=main)
以下是来自abalone.names的数据集列的分类:
Name Data Type Meas. Description
---- --------- ----- -----------
Sex nominal M, F, [or] I (infant)
Length continuous mm Longest shell measurement
Diameter continuous mm perpendicular to length
Height continuous mm with meat in shell
Whole weight continuous grams whole abalone
Shucked weight continuous grams weight of meat
Viscera weight continuous grams gut weight (after bleeding)
Shell weight continuous grams after being dried
Rings integer +1.5 gives the age in years
数据集条目按此顺序显示为常见的分隔值,并带有新条目的新行。