我在我的应用程序中将 Spark Streaming 用于多个自定义接收器(2 个接收器用于不同的 UDP 数据套接字,1 个用于 HTTP 数据)。接收者的转换没有任何共同的资源。
当输入数据的数量增加时,我发现这 3 个接收器不是并行工作,而是一个接一个地工作。
例如,如果我将批处理间隔设置为 20 秒,则每个接收器处理数据大约 5 秒,但如果所有 3 个接收器一起启用,它们的汇总处理时间 = 3 * 5 秒(大约),而不是 5 秒。
所以我创建了这个测试,并看到了同样的情况。
Environment: Core i5, 4 cores, 16 GB of memory.
4 个内核的 2 个 UDP 接收器(因此足以接收和处理)。dstream 的转换很奇怪,不会缓存(持久化),但仅用于测试目的
问题:出了什么问题以及如何启用并行处理?
Spark web ui图片显示,接收者的信息处理一一。
@Slf4j
public class SparkApp {
public static void main(String[] args) throws InterruptedException {
SparkConf conf = new SparkConf().setMaster("local[*]")
.setAppName("ParallelReceiver");
// no changes in processing
conf.set("spark.cores.max", "4");
// undocumented, has some effect for parallel processing (spark web ui),
// but not for the whole processing time
conf.set("spark.streaming.concurrentJobs", "10");
JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(1));
RunCalc runCalc1 = new RunCalc(jssc, 5216, 2000, "1");
runCalc1.service();
RunCalc runCalc2 = new RunCalc(jssc, 5217, 2000, "2");
runCalc2.service();
jssc.start();
jssc.awaitTermination();
}
}
@Data
@Slf4j
public class RunCalc {
private final JavaStreamingContext jssc;
private final int port;
private final Integer defaultBitrate;
private final String suff;
public void service() {
// get stream nginx log data from UDP
JavaReceiverInputDStream<NginxRaw> records = jssc.receiverStream(new UdpReceiver(port, defaultBitrate));
records.print();
calc(records, suff);
records.foreachRDD(rdd -> DebugUtil.saveTestDataToDisk(rdd, suff));
}
private void calc(JavaReceiverInputDStream<NginxRaw> records, String suff) {
// first operation
JavaDStream<Integer> reduce = records.filter(r -> r.getChannelName() != null)
.map(NginxRaw::getBytesSent)
.reduce((r1, r2) -> r1 + r2);
reduce.foreachRDD(rdd -> DebugUtil.saveTestDataToDisk(rdd, "reduce" + "-" + suff));
// second operation
JavaPairDStream<String, NginxRaw> uidRawPairs = records.mapToPair(r -> new Tuple2<>(r.getMac()
.toUpperCase(), r))
.window(Durations.minutes(1), Durations.minutes(1));
JavaPairDStream<String, Iterable<NginxRaw>> groups = uidRawPairs.groupByKey();
JavaPairDStream<String, Long> uidSizePairs = groups.mapValues(v -> v.spliterator()
.getExactSizeIfKnown());
uidSizePairs.foreachRDD(rdd -> DebugUtil.saveTestDataToDisk(rdd, "uidSizeWindowCalc" + "-" + suff));
}
}
@Slf4j
public class UdpReceiver extends Receiver<NginxRaw> {
private final int port;
private final int defaultBitrate;
private DatagramSocket socket;
public UdpReceiver(int port, int defaultBitrate) {
super(StorageLevel.MEMORY_AND_DISK());
this.port = port;
this.defaultBitrate = defaultBitrate;
}
@Override
public void onStart() {
new Thread(this::receive).start();
}
@Override
public void onStop() {
}
private void receive() {
try {
log.debug("receive");
log.debug("thread: {}", Thread.currentThread());
String row;
initSocket();
byte[] receiveData = new byte[5000];
// Until stopped or connection broken continue reading
while (!isStopped()) {
DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length);
socket.receive(receivePacket);
byte[] data = receivePacket.getData();
row = new String(data, 0, receivePacket.getLength());
NginxRaw rawLine = new NginxRaw(row, defaultBitrate);
filterAndSave(rawLine);
}
socket.close();
// Restart in an attempt to connect again when server is active again
log.debug("Trying to connect again");
restart("Trying to connect again");
} catch (ConnectException e) {
// restart if could not connect to server
log.error("Could not connect", e);
reportError("Could not connect: ", e);
restart("Could not connect", e);
} catch (Throwable e) {
// restart if there is any other error
log.error("Error receiving data", e);
reportError("Error receiving data: ", e);
restart("Error receiving data", e);
}
}
/**
* connect to the server
*/
private void initSocket() {
if (socket == null) {
try {
socket = new DatagramSocket(null);
socket.setReuseAddress(true);
socket.setBroadcast(true);
socket.bind(new InetSocketAddress(port));
} catch (SocketException e) {
log.debug("Error = {}", e);
e.printStackTrace();
}
}
}
private void filterAndSave(NginxRaw rawLine) {
if (!rawLine.getMac()
.equals(SyslogRaw.SYSLOG_NOT_FILLED_STRING)
&&
!rawLine.getChannelName()
.equals(SyslogRaw.SYSLOG_NOT_FILLED_STRING)
&& !rawLine.getChannelName()
.equals("vod")
&& !rawLine.getIp()
.equals("127.0.0.1")) {
store(rawLine);
}
}
}