EDIT: This is my original answer, which we will call Case 1, where there is no precedence to the keys
You cannot do it as a sorted integer because that is one dimensional and your data is multi-dimensional. So "nearness" in that sense cannot be established on a line.
Your example shows bird, fish and soda for all 3 lines. Are the keys fixed and known? If they are not, then your first step is to hash the keys of a row to establish rows that have the same keys.
For the values, consider this as a poor man's Saturday Night similarity trick. Hash the values, any two rows that match on that hash are an exact match and represent the same "spot", zero distance.
If N is the number of key/value pairs:
The closest non-exact "nearness" would mean matching N-1 out of N values. So you generate N more hashes, each one dropping out one of the values. Any two rows that match on those hashes have N-1 out of N values in common.
The next closest non-exact "nearness" would mean matching N-2 out of N values. So you generate more than N more hashes (I can't figure the binary this late), this time each hash leaves out a combination of two values. Any two rows that match on those hashes have N-2 out of N values in common.
So you can see where this is going. At the logical extreme you end up with 2^N hashes, not very savory, but I'm assuming you would not go that far because you reach a point where too few matching values would be considered to "far" to be worth considering.
EDIT: To see how we cannot escape dimensionality, consider just two keys, with values 1-9. Plot all possible values on a graph. We see see that {1,1} is close to {2,2}, but also that {5,6} is close to {6,7}. So we get a brainstorm, we say, Aha! I'll calculate each point's distance from the origin using Pythagorean theorem! This will make both {1,1} and {2,2} easy to detect. But then the two points {1,10} and {10,1} will get the same number, even though they are as far apart as they can be on the graph. So we say, ok, I need to add the angle for each. Two points at the same distance are distinguished by their angle, two points at the same angle are distinguished by their distance. But of course now we've plotted them on two dimensions.
EDIT: Case 2 would be when there is precedence to the keys, when key 1 is more significant than key 2, which is more significant than key 3, etc. In this case, if the allowed values were A-Z, you would string the values together as if they were digits to get a sortable value. ABC is very close to ABD, but very far from BBD.