1

我有与这个问题相同的问题,但不想只向优化问题添加一个而是几个约束。

因此,例如,我想用和小于和小于x1 + 5 * x2的约束来最大化(不用说,实际问题要复杂得多,不能像这个一样被扔进去;它只是用来说明问题。 ..)。x1x25x23scipy.optimize.minimize

我可以像这样进行丑陋的黑客攻击:

from scipy.optimize import differential_evolution
import numpy as np

def simple_test(x, more_constraints):

    # check wether all constraints evaluate to True
    if all(map(eval, more_constraints)):

        return -1 * (x[0] + 5 * x[1])

    # if not all constraints evaluate to True, return a positive number
    return 10

bounds = [(0., 5.), (0., 5.)]

additional_constraints = ['x[0] + x[1] <= 5.', 'x[1] <= 3']
result = differential_evolution(simple_test, bounds, args=(additional_constraints, ), tol=1e-6)
print(result.x, result.fun, sum(result.x))

这将打印

[ 1.99999986  3.        ] -16.9999998396 4.99999985882

正如人们所期望的那样。

有没有比使用相当“危险”更好/更直接的方法来添加几个约束eval

4

2 回答 2

2

一个例子是这样的::

additional_constraints = [lambda(x): x[0] + x[1] <= 5., lambda(x):x[1] <= 3]

def simple_test(x, more_constraints):

    # check wether all constraints evaluate to True
    if all(constraint(x) for constraint in more_constraints):

        return -1 * (x[0] + 5 * x[1])

    # if not all constraints evaluate to True, return a positive number
    return 10
于 2017-11-18T18:26:28.437 回答
1

当前接受的答案描述了一种可能的黑客攻击,但是对于问题中描述的问题有一个适当的解决方案,可以使用scipy.optimize.differential_evolution强制执行多个非线性约束。

正确的方法是使用scipy.optimize.NonlinearConstraint函数。

下面我给出了一个在两个圆的交点定义的区域内优化经典Rosenbrock 函数的重要示例。

import numpy as np
from scipy import optimize

# Rosenbrock function
def fun(x):
    return 100*(x[1] - x[0]**2)**2 + (1 - x[0])**2

# Function defining the nonlinear constraints:
# 1) x^2 + (y - 3)^2 < 4
# 2) (x - 1)^2 + (y + 1)^2 < 13
def constr_fun(x):
    r1 = x[0]**2 + (x[1] - 3)**2
    r2 = (x[0] - 1)**2 + (x[1] + 1)**2
    return r1, r2

# No lower limit on constr_fun
lb = [-np.inf, -np.inf]

# Upper limit on constr_fun
ub = [4, 13]

# Bounds are irrelevant for this problem, but are needed
# for differential_evolution to compute the starting points
bounds = [[-2.2, 1.5], [-0.5, 2.2]]

nlc = optimize.NonlinearConstraint(constr_fun, lb, ub)
sol = optimize.differential_evolution(fun, bounds, constraints=nlc)

# Accurate solution by Mathematica
true = [1.174907377273171, 1.381484428610871]
print(f"nfev = {sol.nfev}")
print(f"x = {sol.x}")
print(f"err = {sol.x - true}\n")

这将使用默认参数打印以下内容:

nfev = 636
x = [1.17490808 1.38148613]
err = [7.06260962e-07 1.70116282e-06]

这是函数(轮廓)和由非线性约束定义的可行区域(绿线内的阴影)的可视化。受约束的全局最小值由黄点表示,而洋红色表示不受约束的全局最小值。

这个受约束的问题在可行区域的边界上有一个明显的局部最小值,(x, y) ~ (-1.2, 1.4)这将使局部优化器无法收敛到许多起始位置的全局最小值。但是,differential_evolution始终如一地找到全局最小值。

在此处输入图像描述

于 2022-03-03T17:24:52.013 回答