0

我正在尝试实现单词阶梯问题,我必须尽可能以最短的路径将一个单词转换为另一个单词。显然我们可以使用广度优先搜索(BFS)来解决它,但在此之前我们必须先绘制图表。我有实现了桶的概念,如果某些单词与桶类型匹配,则它们属于桶。但我的图表没有正确实现。

给定的单词列表是 ["CAT", "BAT", "COT", "COG", "COW", "RAT", "BUT", "CUT", "DOG", "WED"]

所以对于每个单词我可以创建一个桶。例如对于单词'CAT',我可以有三个桶_AT,C_T,CA_。类似地,我可以为其余的单词创建存储桶,并且与存储桶类型匹配的单词将属于这些存储桶。

用手实现应该给我这样的图表 在此处输入图像描述

由于图形是无向的,因此对于顶点 COG,其相邻顶点应该是 DOG、COW、COT(关系双向工作),但相反,我得到 COG 与任何事物无关。下面是我的代码

class Vertex:
    def __init__(self,key):
        self.id = key
        self.connectedTo = {}

    def addNeighbour(self,nbr,weight=0):
        self.connectedTo[nbr] = weight

    #string representation of the object
    def __str__(self):
        return str(self.id) + " is connected to " + str([x.id for x in self.connectedTo])

    def getConnections(self):
        return self.connectedTo.keys()

    def getId(self):
        return self.id

    def getWeight(self,nbr):
        return self.connectedTo[nbr]

class Graph:
    def __init__(self):
        self.vertList = {}
        self.numVertices = 0

    def addVertex(self,key):
        self.numVertices += 1
        newVertex = Vertex(key)
        self.vertList[key] = newVertex
        return newVertex

    def getVertex(self,n):
        if n in self.vertList:
            return self.vertList[n]
        else:
            return None

    def addEdge(self,f,t,cost=0):
        if f not in self.vertList:
            nv = self.addVertex(f)

        if t not in self.vertList:
            nv = self.addVertex(t)

        self.addVertex(f).addNeighbour(self.addVertex(t),cost)

    def getVertices(self):
        return self.vertList.keys()

    def __iter__(self):
        return iter(self.vertList.values())


wordList = ["CAT", "BAT", "COT", "COG", "COW", "RAT", "BUT", "CUT", "DOG", "WED"]

def buildGraph(wordList):
    d = {} #in this dictionary the buckets will be the keys and the words will be their values
    g = Graph()
    for i in wordList:
        for j in range(len(i)):
            bucket = i[:j] + "_" + i[j+1:]
            if bucket in d:
                #we are storing the words that fall under the same bucket in a list 
                d[bucket].append(i)
            else:
                d[bucket] = [i]

    # create vertices for the words under the buckets and join them
    #print("Dictionary",d)
    for bucket in d.keys():
        for word1 in d[bucket]:
            for word2 in d[bucket]:
                #we ensure same words are not treated as two different vertices
                if word1 != word2:
                    g.addEdge(word1,word2)

    return g

# get the graph object
gobj = buildGraph(wordList)

for v in gobj: #the graph contains a set of vertices
    print(v)

我得到的结果是

BUT is connected to ['BAT']
CUT is connected to ['COT']
COW is connected to ['COG']
COG is connected to []
CAT is connected to []
DOG is connected to ['COG']
RAT is connected to ['BAT']
COT is connected to []
BAT is connected to []

我希望结果是这样的

BUT is connected to ['BAT', 'CUT']
CUT is connected to ['CAT', 'COT', 'BUT']
and so on....

我究竟做错了什么?

4

1 回答 1

2

问题出在你的addEdge方法上。

您正在检查图中是否已经存在顶点,好的。但是,如果它们存在,那么无论如何您都在创建新顶点并为这些新顶点添加边,丢弃以前的顶点。这就是为什么最终每个顶点都有一个边。

只需将最后一行更改addEdge为:

self.vertList[f].addNeighbour(self.vertList[t],cost)
于 2017-11-13T17:50:49.290 回答