0

我还是 R 新手,很多事情仍然难以执行。这里的社区非常有帮助!我还有另一个问题。1. 为每个组创建一个新的观察值,它将是某些变量的总和(或加权总和) 2. 为一个有时包含 NA 的变量创建一个加权总和

我的数据集:

    df = structure(list(ID = c(1L, 1L, 2L, 2L, 3L, 3L, 4L, 4L, 4L), ID_name = c("AA", "AA", "BB", "BB", "CC","CC", "DD","DD","DD"),
    Volume = c(10L, 20L, 30L, 50L, 50L, 40L, 20L, 
    30L, 10L), Score= c(0.1L, 0.3L, 0.5L, NA, 0.6L, NA, 
    0.6L, 0.2L, 0.6L)).Names = c("ID", "ID_name","Volume","Score"), class = "data.frame", row.names = c(NA, -9L))

我想 1.为每个唯一 ID 创建一个新的观察,即 ID 1、ID 2、ID 3 和 ID 4

2. 这些新的观察结果如下: ID ID_name 体积分数(加权平均) 1 AA 30(即 10+20) (10*0.1+0.3*20)/(10+20) = 0.23 2 BB 80 (30 +50) (30*0.5)/30=0.5 (NA 行在分数计算中被忽略) 3 CC 90 (50+40) (60*0.6)/60=0.6 (NA 行在分数计算中被忽略) 4 DD 60 (20+30+10) (20*0.6+30*0.2+10*0.6)/60=0.4

我尝试了 mutate 函数,但这似乎不起作用。任何线索将不胜感激。谢谢

4

1 回答 1

0
library(dplyr)

df = data.frame(ID = c(1L, 1L, 2L, 2L, 3L, 3L, 4L, 4L, 4L), 
                ID_name = c("AA", "AA", "BB", "BB", "CC", "CC", "DD", "DD", "DD"), 
                Volume = c(10L, 20L, 30L, 50L, 50L, 40L, 20L, 30L, 10L), 
                Score = c(0.1, 0.3, 0.5, NA, 0.6, NA, 0.6, 0.2, 0.6))


df %>%
  mutate(HasScore = ifelse(is.na(Score), 0, 1)) %>%
  group_by(ID, ID_name) %>%
  summarise(WA = sum(Volume*Score, na.rm = T)/sum(Volume*HasScore),
            Volume = sum(Volume)) %>%
  ungroup()

# # A tibble: 4 x 4
#      ID ID_name        WA Volume
#   <int>  <fctr>     <dbl>  <int>
# 1     1      AA 0.2333333     30
# 2     2      BB 0.5000000     80
# 3     3      CC 0.6000000     90
# 4     4      DD 0.4000000     60
于 2017-11-09T14:58:46.773 回答