我实现了这两种算法:@UriGoren 发布的一种算法(有一点改进 - 仅整数数学)和@RoryDaulton 用Java 发布的一种算法。我遇到了一些问题,因为我的多边形是封闭的,所以两种算法都认为第二个是凹的,而它是凸的。所以我改变了它以防止这种情况。我的方法还使用基本索引(可以是或不是 0)。
这些是我的测试顶点:
// concave
int []x = {0,100,200,200,100,0,0};
int []y = {50,0,50,200,50,200,50};
// convex
int []x = {0,100,200,100,0,0};
int []y = {50,0,50,200,200,50};
现在算法:
private boolean isConvex1(int[] x, int[] y, int base, int n) // Rory Daulton
{
final double TWO_PI = 2 * Math.PI;
// points is 'strictly convex': points are valid, side lengths non-zero, interior angles are strictly between zero and a straight
// angle, and the polygon does not intersect itself.
// NOTES: 1. Algorithm: the signed changes of the direction angles from one side to the next side must be all positive or
// all negative, and their sum must equal plus-or-minus one full turn (2 pi radians). Also check for too few,
// invalid, or repeated points.
// 2. No check is explicitly done for zero internal angles(180 degree direction-change angle) as this is covered
// in other ways, including the `n < 3` check.
// needed for any bad points or direction changes
// Check for too few points
if (n <= 3) return true;
if (x[base] == x[n-1] && y[base] == y[n-1]) // if its a closed polygon, ignore last vertex
n--;
// Get starting information
int old_x = x[n-2], old_y = y[n-2];
int new_x = x[n-1], new_y = y[n-1];
double new_direction = Math.atan2(new_y - old_y, new_x - old_x), old_direction;
double angle_sum = 0.0, orientation=0;
// Check each point (the side ending there, its angle) and accum. angles for ndx, newpoint in enumerate(polygon):
for (int i = 0; i < n; i++)
{
// Update point coordinates and side directions, check side length
old_x = new_x; old_y = new_y; old_direction = new_direction;
int p = base++;
new_x = x[p]; new_y = y[p];
new_direction = Math.atan2(new_y - old_y, new_x - old_x);
if (old_x == new_x && old_y == new_y)
return false; // repeated consecutive points
// Calculate & check the normalized direction-change angle
double angle = new_direction - old_direction;
if (angle <= -Math.PI)
angle += TWO_PI; // make it in half-open interval (-Pi, Pi]
else if (angle > Math.PI)
angle -= TWO_PI;
if (i == 0) // if first time through loop, initialize orientation
{
if (angle == 0.0) return false;
orientation = angle > 0 ? 1 : -1;
}
else // if other time through loop, check orientation is stable
if (orientation * angle <= 0) // not both pos. or both neg.
return false;
// Accumulate the direction-change angle
angle_sum += angle;
// Check that the total number of full turns is plus-or-minus 1
}
return Math.abs(Math.round(angle_sum / TWO_PI)) == 1;
}
现在来自 Uri Goren
private boolean isConvex2(int[] x, int[] y, int base, int n)
{
if (n < 4)
return true;
boolean sign = false;
if (x[base] == x[n-1] && y[base] == y[n-1]) // if its a closed polygon, ignore last vertex
n--;
for(int p=0; p < n; p++)
{
int i = base++;
int i1 = i+1; if (i1 >= n) i1 = base + i1-n;
int i2 = i+2; if (i2 >= n) i2 = base + i2-n;
int dx1 = x[i1] - x[i];
int dy1 = y[i1] - y[i];
int dx2 = x[i2] - x[i1];
int dy2 = y[i2] - y[i1];
int crossproduct = dx1*dy2 - dy1*dx2;
if (i == base)
sign = crossproduct > 0;
else
if (sign != (crossproduct > 0))
return false;
}
return true;
}