我是张量流的新手,正在探索使用张量流的推荐系统。我已经在 github 中验证了一些示例代码,并且遇到的情况与以下内容大致相同
https://github.com/songgc/TF-recomm/blob/master/svd_train_val.py
但问题是,如何在上述代码中为用户 U1 选择最佳推荐?
如果有任何示例代码或方法,请分享。谢谢
我是张量流的新手,正在探索使用张量流的推荐系统。我已经在 github 中验证了一些示例代码,并且遇到的情况与以下内容大致相同
https://github.com/songgc/TF-recomm/blob/master/svd_train_val.py
但问题是,如何在上述代码中为用户 U1 选择最佳推荐?
如果有任何示例代码或方法,请分享。谢谢
这有点困难!基本上,当svd
返回时,它会关闭会话,并且张量会丢失它们的值(您仍然保留图表)。有几个选项:
with tf.Session() as sess: ....
块中,而是返回会话;with ...
块内进行用户处理最糟糕的选择是选项 3:您应该将模型与使用它分开训练。最好的方法是将模型和权重保存在某处,然后恢复会话。但是,您仍然有一个问题,即在恢复会话对象后如何使用它。为了演示这部分,我将使用选项 3 来解决这个问题,假设您知道如何恢复会话。
def svd(train, test):
samples_per_batch = len(train) // BATCH_SIZE
iter_train = dataio.ShuffleIterator([train["user"],
train["item"],
train["rate"]],
batch_size=BATCH_SIZE)
iter_test = dataio.OneEpochIterator([test["user"],
test["item"],
test["rate"]],
batch_size=-1)
user_batch = tf.placeholder(tf.int32, shape=[None], name="id_user")
item_batch = tf.placeholder(tf.int32, shape=[None], name="id_item")
rate_batch = tf.placeholder(tf.float32, shape=[None])
infer, regularizer = ops.inference_svd(user_batch, item_batch, user_num=USER_NUM, item_num=ITEM_NUM, dim=DIM,
device=DEVICE)
global_step = tf.contrib.framework.get_or_create_global_step()
_, train_op = ops.optimization(infer, regularizer, rate_batch, learning_rate=0.001, reg=0.05, device=DEVICE)
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
summary_writer = tf.summary.FileWriter(logdir="/tmp/svd/log", graph=sess.graph)
print("{} {} {} {}".format("epoch", "train_error", "val_error", "elapsed_time"))
errors = deque(maxlen=samples_per_batch)
start = time.time()
for i in range(EPOCH_MAX * samples_per_batch):
users, items, rates = next(iter_train)
_, pred_batch = sess.run([train_op, infer], feed_dict={user_batch: users, item_batch: items, rate_batch: rates})
pred_batch = clip(pred_batch)
errors.append(np.power(pred_batch - rates, 2))
if i % samples_per_batch == 0:
train_err = np.sqrt(np.mean(errors))
test_err2 = np.array([])
for users, items, rates in iter_test:
pred_batch = sess.run(infer, feed_dict={user_batch: users,item_batch: items})
pred_batch = clip(pred_batch)
test_err2 = np.append(test_err2, np.power(pred_batch - rates, 2))
end = time.time()
test_err = np.sqrt(np.mean(test_err2))
print("{:3d} {:f} {:f} {:f}(s)".format(i // samples_per_batch, train_err, test_err, end - start))
train_err_summary = make_scalar_summary("training_error", train_err)
test_err_summary = make_scalar_summary("test_error", test_err)
summary_writer.add_summary(train_err_summary, i)
summary_writer.add_summary(test_err_summary, i)
start = end
# Get the top rated movie for user #1 for every item in the set
userNumber = 1
user_prediction = sess.run(infer, feed_dict={user_batch: np.array([userNumber]), item_batch: np.array(range(ITEM_NUM))})
# The index number is the same as the item number. Orders from lowest (least recommended)
# to largeset
index_rating_order = np.argsort(user_prediction)
print "Top ten recommended items for user {} are".format(userNumber)
print index_rating_order[-10:][::-1] # at the end, reverse the list
# If you want to include the score:
items_to_choose = index_rating_order[-10:][::-1]
for item, score in zip(items_to_choose, user_prediction[items_to_choose]):
print "{}: {}".format(item,score)
我所做的唯一更改从第一行注释开始。再次强调,最佳实践是在这个函数中进行训练,但实际上是单独做出你的预测。