我将为这个示例重用一些个人Point
和Point3D
简化的类:
Point
class Point:
#Constructors
def __init__(self, x, y):
self.x = x
self.y = y
# Properties
@property
def x(self):
return self._x
@x.setter
def x(self, value):
self._x = float(value)
@property
def y(self):
return self._y
@y.setter
def y(self, value):
self._y = float(value)
# Printing magic methods
def __repr__(self):
return "({p.x},{p.y})".format(p=self)
# Comparison magic methods
def __is_compatible(self, other):
return hasattr(other, 'x') and hasattr(other, 'y')
def __eq__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x == other.x) and (self.y == other.y)
def __ne__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x != other.x) or (self.y != other.y)
def __lt__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y) < (other.x, other.y)
def __le__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y) <= (other.x, other.y)
def __gt__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y) > (other.x, other.y)
def __ge__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y) >= (other.x, other.y)
它代表一个二维点。它有一个简单的构造函数x
和y
确保它们始终存储float
s 的属性,用于字符串表示的魔术方法(x,y)
和比较以使它们可排序(按 排序x
,然后按y
)。我的原始类具有附加功能,例如加法和减法(向量行为)魔术方法,但本示例不需要它们。
Point3D
class Point3D(Point):
# Constructors
def __init__(self, x, y, z):
super().__init__(x, y)
self.z = z
@classmethod
def from2D(cls, p, z):
return cls(p.x, p.y, z)
# Properties
@property
def z(self):
return self._z
@z.setter
def z(self, value):
self._z = (value + 180.0) % 360 - 180
# Printing magic methods
def __repr__(self):
return "({p.x},{p.y},{p.z})".format(p=self)
# Comparison magic methods
def __is_compatible(self, other):
return hasattr(other, 'x') and hasattr(other, 'y') and hasattr(other, 'z')
def __eq__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x == other.x) and (self.y == other.y) and (self.z == other.z)
def __ne__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x != other.x) or (self.y != other.y) or (self.z != other.z)
def __lt__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y, self.z) < (other.x, other.y, other.z)
def __le__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y, self.z) <= (other.x, other.y, other.z)
def __gt__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y, self.z) > (other.x, other.y, other.z)
def __ge__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y, self.z) >= (other.x, other.y, other.z)
与Point
3D 点相同。它还包括一个额外的构造函数类方法,它接受 aPoint
和它的 z 值作为参数。
线性插值
def linear_interpolation(x, *points, extrapolate=False):
# Check there are a minimum of two points
if len(points) < 2:
raise ValueError("Not enought points given for interpolation.")
# Sort the points
points = sorted(points)
# Check that x is the valid interpolation interval
if not extrapolate and (x < points[0].x or x > points[-1].x):
raise ValueError("{} is not in the interpolation interval.".format(x))
# Determine which are the two surrounding interpolation points
if x < points[0].x:
i = 0
elif x > points[-1].x:
i = len(points)-2
else:
i = 0
while points[i+1].x < x:
i += 1
p1, p2 = points[i:i+2]
# Interpolate
return Point(x, p1.y + (p2.y-p1.y) * (x-p1.x) / (p2.x-p1.x))
它采用第一个位置参数,该参数将确定我们想要计算其 y 值的 x,以及Point
我们想要插值的无限数量的实例。关键字参数 ( extrapolate
) 允许打开外推。Point
返回一个带有请求的 x 和计算出的 y 值的实例。
双线性插值
我提供了两种选择,它们都具有与之前的插值函数相似的签名。Point
我们要计算其 z 值的一个关键字参数 ( ) extrapolate
,它打开外推并返回一个Point3D
包含请求和计算数据的实例。这两种方法之间的区别在于如何提供将用于插值的值:
方法一
第一种方法采用两级深度嵌套dict
。第一级键表示 x 值,第二级键表示 y 值,第二级键表示 z 值。
def bilinear_interpolation(p, points, extrapolate=False):
x_values = sorted(points.keys())
# Check there are a minimum of two x values
if len(x_values) < 2:
raise ValueError("Not enought points given for interpolation.")
y_values = set()
for value in points.values():
y_values.update(value.keys())
y_values = sorted(y_values)
# Check there are a minimum of two y values
if len(y_values) < 2:
raise ValueError("Not enought points given for interpolation.")
# Check that p is in the valid interval
if not extrapolate and (p.x < x_values[0] or p.x > x_values[-1] or p.y < y_values[0] or p.y > y_values[-1]):
raise ValueError("{} is not in the interpolation interval.".format(p))
# Determine which are the four surrounding interpolation points
if p.x < x_values[0]:
i = 0
elif p.x > x_values[-1]:
i = len(x_values) - 2
else:
i = 0
while x_values[i+1] < p.x:
i += 1
if p.y < y_values[0]:
j = 0
elif p.y > y_values[-1]:
j = len(y_values) - 2
else:
j = 0
while y_values[j+1] < p.y:
j += 1
surroundings = [
Point(x_values[i ], y_values[j ]),
Point(x_values[i ], y_values[j+1]),
Point(x_values[i+1], y_values[j ]),
Point(x_values[i+1], y_values[j+1]),
]
for i, surrounding in enumerate(surroundings):
try:
surroundings[i] = Point3D.from2D(surrounding, points[surrounding.x][surrounding.y])
except KeyError:
raise ValueError("{} is missing in the interpolation grid.".format(surrounding))
p1, p2, p3, p4 = surroundings
# Interpolate
p12 = Point3D(p1.x, p.y, linear_interpolation(p.y, Point(p1.y,p1.z), Point(p2.y,p2.z), extrapolate=True).y)
p34 = Point3D(p3.x, p.y, linear_interpolation(p.y, Point(p3.y,p3.z), Point(p4.y,p4.z), extrapolate=True).y)
return Point3D(p.x, p12.y, linear_interpolation(p.x, Point(p12.x,p12.z), Point(p34.x,p34.z), extrapolate=True).y)
print(bilinear_interpolation(Point(2,3), {1: {2: 5, 4: 6}, 3: {2: 3, 4: 9}}))
方法二
第二种方法采用无限数量的Point3D
实例。
def bilinear_interpolation(p, *points, extrapolate=False):
# Check there are a minimum of four points
if len(points) < 4:
raise ValueError("Not enought points given for interpolation.")
# Sort the points into a grid
x_values = set()
y_values = set()
for point in sorted(points):
x_values.add(point.x)
y_values.add(point.y)
x_values = sorted(x_values)
y_values = sorted(y_values)
# Check that p is in the valid interval
if not extrapolate and (p.x < x_values[0] or p.x > x_values[-1] or p.y < y_values[0] or p.y > y_values[-1]):
raise ValueError("{} is not in the interpolation interval.".format(p))
# Determine which are the four surrounding interpolation points
if p.x < x_values[0]:
i = 0
elif p.x > x_values[-1]:
i = len(x_values) - 2
else:
i = 0
while x_values[i+1] < p.x:
i += 1
if p.y < y_values[0]:
j = 0
elif p.y > y_values[-1]:
j = len(y_values) - 2
else:
j = 0
while y_values[j+1] < p.y:
j += 1
surroundings = [
Point(x_values[i ], y_values[j ]),
Point(x_values[i ], y_values[j+1]),
Point(x_values[i+1], y_values[j ]),
Point(x_values[i+1], y_values[j+1]),
]
for point in points:
for i, surrounding in enumerate(surroundings):
if point.x == surrounding.x and point.y == surrounding.y:
surroundings[i] = point
for surrounding in surroundings:
if not isinstance(surrounding, Point3D):
raise ValueError("{} is missing in the interpolation grid.".format(surrounding))
p1, p2, p3, p4 = surroundings
# Interpolate
p12 = Point3D(p1.x, p.y, linear_interpolation(p.y, Point(p1.y,p1.z), Point(p2.y,p2.z), extrapolate=True).y)
p34 = Point3D(p3.x, p.y, linear_interpolation(p.y, Point(p3.y,p3.z), Point(p4.y,p4.z), extrapolate=True).y)
return Point3D(p.x, p12.y, linear_interpolation(p.x, Point(p12.x,p12.z), Point(p34.x,p34.z), extrapolate=True).y)
print(bilinear_interpolation(Point(2,3), Point3D(3,2,3), Point3D(1,4,6), Point3D(3,4,9), Point3D(1,2,5)))
您可以从这两种方法中看到它们使用先前定义的linear_interpoaltion
函数,并且它们总是设置extrapolation
为,True
因为它们已经引发了异常,如果它是False
并且请求的点超出了提供的间隔。