很可能有一种更熊猫的方式来做到这一点 - 这有点像黑客,依靠一种将原始 df 的索引映射到每个滚动窗口的手动方式。(我选择了 6 号)。直到第 6 行的记录与第一个窗口相关联;第 7 行是第二个窗口,依此类推。
n = 100
df = pd.DataFrame(np.random.randint(0,n,size=(n,2)), columns = ['a','b'])
## set window size
window=6
std = 1 # I set it at just 1; with real data and larger windows, can be larger
## create df with rolling stats, upper and lower bounds
bounds = pd.DataFrame({'median':df['b'].rolling(window).median(),
'std':df['b'].rolling(window).std()})
bounds['upper']=bounds['median']+bounds['std']*std
bounds['lower']=bounds['median']-bounds['std']*std
## here, we set an identifier for each window which maps to the original df
## the first six rows are the first window; then each additional row is a new window
bounds['window_id']=np.append(np.zeros(window),np.arange(1,n-window+1))
## then we can assign the original 'b' value back to the bounds df
bounds['b']=df['b']
## and finally, keep only rows where b falls within the desired bounds
bounds.loc[bounds.eval("lower<b<upper")]