4

当在知道确切路径的情况下计算 n 移动中所有可能的骑士位置的计算解决方案时,我在 Prolog 中回溯时遇到问题。

我的解决方案会打印一些最初的结果,然后在寻找不可能的结果时永远不会终止。

这是我的代码:

move([X, Y], [A, B]) :- X + 1 < 8, Y + 2 < 8, A is X + 1, B is Y + 2.
move([X, Y], [A, B]) :- X + 2 < 8, Y + 1 < 8, A is X + 2, B is Y + 1.
move([X, Y], [A, B]) :- X + 2 < 8, Y - 1 >= 0, A is X + 2, B is Y - 1.
move([X, Y], [A, B]) :- X + 1 < 8, Y - 2 >= 0, A is X + 1, B is Y - 2.
move([X, Y], [A, B]) :- X - 1 >= 0, Y - 2 >= 0, A is X - 1, B is Y - 2.
move([X, Y], [A, B]) :- X - 2 >= 0, Y - 1 >= 0, A is X - 2, B is Y - 1.
move([X, Y], [A, B]) :- X - 2 >= 0, Y + 1 < 8, A is X - 2, B is Y + 1.
move([X, Y], [A, B]) :- X - 1 >= 0, Y + 2 < 8, A is X - 1, B is Y + 2.

knight_move(X,Y,[X,Y],1) :- move(X,Y).
knight_move(X,Y,[X|P],C) :- move(X,Z), knight_move(Z,Y,P,Cn), C is Cn+1.

predict_moves(X,C,P) :- knight_move(X,_,P,C).

示例调用:

predict_moves([1,1],3,P).

结果,我期望 n 3 次移动中的所有可能路径。sb 可以帮助我向我的代码添加条件以阻止我的代码回溯到移动和循环到无穷大吗?

4

3 回答 3

4

如果您使用 CLP(FD) 对整数进行推理,并更改约束的顺序以便在递归之前约束计数器,这将消除您的循环问题:

move([X, Y], [A, B]) :- X + 1 #< 8, Y + 2 #< 8, A #= X + 1, B #= Y + 2.
move([X, Y], [A, B]) :- X + 2 #< 8, Y + 1 #< 8, A #= X + 2, B #= Y + 1.
move([X, Y], [A, B]) :- X + 2 #< 8, Y - 1 #>= 0, A #= X + 2, B #= Y - 1.
move([X, Y], [A, B]) :- X + 1 #< 8, Y - 2 #>= 0, A #= X + 1, B #= Y - 2.
move([X, Y], [A, B]) :- X - 1 #>= 0, Y - 2 #>= 0, A #= X - 1, B #= Y - 2.
move([X, Y], [A, B]) :- X - 2 #>= 0, Y - 1 #>= 0, A #= X - 2, B #= Y - 1.
move([X, Y], [A, B]) :- X - 2 #>= 0, Y + 1 #< 8, A #= X - 2, B #= Y + 1.
move([X, Y], [A, B]) :- X - 1 #>= 0, Y + 2 #< 8, A #= X - 1, B #= Y + 2.


knight_move(X,Y,[X,Y], 1) :- move(X,Y).

# NOTE the constraint of C #= Cn + 1 before the recursive call
knight_move(X,Y,[X|P], C) :- C #> 1, move(X,Z), C #= Cn + 1, knight_move(Z,Y,P,Cn).

predict_moves(X,C,P) :- knight_move(X,_,P,C).

结果是:

| ?- predict_moves([1,1], 3, P).

P = [[1,1],[2,3],[3,5],[4,7]] ? a

P = [[1,1],[2,3],[3,5],[5,6]]

P = [[1,1],[2,3],[3,5],[5,4]]

P = [[1,1],[2,3],[3,5],[4,3]]

P = [[1,1],[2,3],[3,5],[2,3]]

P = [[1,1],[2,3],[3,5],[1,4]]

P = [[1,1],[2,3],[3,5],[1,6]]

P = [[1,1],[2,3],[3,5],[2,7]]

P = [[1,1],[2,3],[4,4],[5,6]]

P = [[1,1],[2,3],[4,4],[6,5]]

P = [[1,1],[2,3],[4,4],[6,3]]

P = [[1,1],[2,3],[4,4],[5,2]]

P = [[1,1],[2,3],[4,4],[3,2]]

P = [[1,1],[2,3],[4,4],[2,3]]

P = [[1,1],[2,3],[4,4],[2,5]]

P = [[1,1],[2,3],[4,4],[3,6]]

P = [[1,1],[2,3],[4,2],[5,4]]

P = [[1,1],[2,3],[4,2],[6,3]]

P = [[1,1],[2,3],[4,2],[6,1]]

P = [[1,1],[2,3],[4,2],[5,0]]

P = [[1,1],[2,3],[4,2],[3,0]]

P = [[1,1],[2,3],[4,2],[2,1]]

P = [[1,1],[2,3],[4,2],[2,3]]

P = [[1,1],[2,3],[4,2],[3,4]]

P = [[1,1],[2,3],[3,1],[4,3]]

P = [[1,1],[2,3],[3,1],[5,2]]

P = [[1,1],[2,3],[3,1],[5,0]]

P = [[1,1],[2,3],[3,1],[1,0]]

P = [[1,1],[2,3],[3,1],[1,2]]

P = [[1,1],[2,3],[3,1],[2,3]]

P = [[1,1],[2,3],[1,1],[2,3]]

P = [[1,1],[2,3],[1,1],[3,2]]

P = [[1,1],[2,3],[1,1],[3,0]]

P = [[1,1],[2,3],[1,1],[0,3]]

P = [[1,1],[2,3],[0,2],[1,4]]

P = [[1,1],[2,3],[0,2],[2,3]]

P = [[1,1],[2,3],[0,2],[2,1]]

P = [[1,1],[2,3],[0,2],[1,0]]

P = [[1,1],[2,3],[0,4],[1,6]]

P = [[1,1],[2,3],[0,4],[2,5]]

P = [[1,1],[2,3],[0,4],[2,3]]

P = [[1,1],[2,3],[0,4],[1,2]]

P = [[1,1],[2,3],[1,5],[2,7]]

P = [[1,1],[2,3],[1,5],[3,6]]

P = [[1,1],[2,3],[1,5],[3,4]]

P = [[1,1],[2,3],[1,5],[2,3]]

P = [[1,1],[2,3],[1,5],[0,3]]

P = [[1,1],[2,3],[1,5],[0,7]]

P = [[1,1],[3,2],[4,4],[5,6]]

P = [[1,1],[3,2],[4,4],[6,5]]

P = [[1,1],[3,2],[4,4],[6,3]]

P = [[1,1],[3,2],[4,4],[5,2]]

P = [[1,1],[3,2],[4,4],[3,2]]

P = [[1,1],[3,2],[4,4],[2,3]]

P = [[1,1],[3,2],[4,4],[2,5]]

P = [[1,1],[3,2],[4,4],[3,6]]

P = [[1,1],[3,2],[5,3],[6,5]]

P = [[1,1],[3,2],[5,3],[7,4]]

P = [[1,1],[3,2],[5,3],[7,2]]

P = [[1,1],[3,2],[5,3],[6,1]]

P = [[1,1],[3,2],[5,3],[4,1]]

P = [[1,1],[3,2],[5,3],[3,2]]

P = [[1,1],[3,2],[5,3],[3,4]]

P = [[1,1],[3,2],[5,3],[4,5]]

P = [[1,1],[3,2],[5,1],[6,3]]

P = [[1,1],[3,2],[5,1],[7,2]]

P = [[1,1],[3,2],[5,1],[7,0]]

P = [[1,1],[3,2],[5,1],[3,0]]

P = [[1,1],[3,2],[5,1],[3,2]]

P = [[1,1],[3,2],[5,1],[4,3]]

P = [[1,1],[3,2],[4,0],[5,2]]

P = [[1,1],[3,2],[4,0],[6,1]]

P = [[1,1],[3,2],[4,0],[2,1]]

P = [[1,1],[3,2],[4,0],[3,2]]

P = [[1,1],[3,2],[2,0],[3,2]]

P = [[1,1],[3,2],[2,0],[4,1]]

P = [[1,1],[3,2],[2,0],[0,1]]

P = [[1,1],[3,2],[2,0],[1,2]]

P = [[1,1],[3,2],[1,1],[2,3]]

P = [[1,1],[3,2],[1,1],[3,2]]

P = [[1,1],[3,2],[1,1],[3,0]]

P = [[1,1],[3,2],[1,1],[0,3]]

P = [[1,1],[3,2],[1,3],[2,5]]

P = [[1,1],[3,2],[1,3],[3,4]]

P = [[1,1],[3,2],[1,3],[3,2]]

P = [[1,1],[3,2],[1,3],[2,1]]

P = [[1,1],[3,2],[1,3],[0,1]]

P = [[1,1],[3,2],[1,3],[0,5]]

P = [[1,1],[3,2],[2,4],[3,6]]

P = [[1,1],[3,2],[2,4],[4,5]]

P = [[1,1],[3,2],[2,4],[4,3]]

P = [[1,1],[3,2],[2,4],[3,2]]

P = [[1,1],[3,2],[2,4],[1,2]]

P = [[1,1],[3,2],[2,4],[0,3]]

P = [[1,1],[3,2],[2,4],[0,5]]

P = [[1,1],[3,2],[2,4],[1,6]]

P = [[1,1],[3,0],[4,2],[5,4]]

P = [[1,1],[3,0],[4,2],[6,3]]

P = [[1,1],[3,0],[4,2],[6,1]]

P = [[1,1],[3,0],[4,2],[5,0]]

P = [[1,1],[3,0],[4,2],[3,0]]

P = [[1,1],[3,0],[4,2],[2,1]]

P = [[1,1],[3,0],[4,2],[2,3]]

P = [[1,1],[3,0],[4,2],[3,4]]

P = [[1,1],[3,0],[5,1],[6,3]]

P = [[1,1],[3,0],[5,1],[7,2]]

P = [[1,1],[3,0],[5,1],[7,0]]

P = [[1,1],[3,0],[5,1],[3,0]]

P = [[1,1],[3,0],[5,1],[3,2]]

P = [[1,1],[3,0],[5,1],[4,3]]

P = [[1,1],[3,0],[1,1],[2,3]]

P = [[1,1],[3,0],[1,1],[3,2]]

P = [[1,1],[3,0],[1,1],[3,0]]

P = [[1,1],[3,0],[1,1],[0,3]]

P = [[1,1],[3,0],[2,2],[3,4]]

P = [[1,1],[3,0],[2,2],[4,3]]

P = [[1,1],[3,0],[2,2],[4,1]]

P = [[1,1],[3,0],[2,2],[3,0]]

P = [[1,1],[3,0],[2,2],[1,0]]

P = [[1,1],[3,0],[2,2],[0,1]]

P = [[1,1],[3,0],[2,2],[0,3]]

P = [[1,1],[3,0],[2,2],[1,4]]

P = [[1,1],[0,3],[1,5],[2,7]]

P = [[1,1],[0,3],[1,5],[3,6]]

P = [[1,1],[0,3],[1,5],[3,4]]

P = [[1,1],[0,3],[1,5],[2,3]]

P = [[1,1],[0,3],[1,5],[0,3]]

P = [[1,1],[0,3],[1,5],[0,7]]

P = [[1,1],[0,3],[2,4],[3,6]]

P = [[1,1],[0,3],[2,4],[4,5]]

P = [[1,1],[0,3],[2,4],[4,3]]

P = [[1,1],[0,3],[2,4],[3,2]]

P = [[1,1],[0,3],[2,4],[1,2]]

P = [[1,1],[0,3],[2,4],[0,3]]

P = [[1,1],[0,3],[2,4],[0,5]]

P = [[1,1],[0,3],[2,4],[1,6]]

P = [[1,1],[0,3],[2,2],[3,4]]

P = [[1,1],[0,3],[2,2],[4,3]]

P = [[1,1],[0,3],[2,2],[4,1]]

P = [[1,1],[0,3],[2,2],[3,0]]

P = [[1,1],[0,3],[2,2],[1,0]]

P = [[1,1],[0,3],[2,2],[0,1]]

P = [[1,1],[0,3],[2,2],[0,3]]

P = [[1,1],[0,3],[2,2],[1,4]]

P = [[1,1],[0,3],[1,1],[2,3]]

P = [[1,1],[0,3],[1,1],[3,2]]

P = [[1,1],[0,3],[1,1],[3,0]]

P = [[1,1],[0,3],[1,1],[0,3]]

(3 ms) no
| ?-
于 2017-10-26T16:39:41.700 回答
4

在真正消除问题之前,让我们缩小未终止的来源。就您而言,这特别棘手,因为您会得到很好且正确的答案。只有这样才有问题。缩小问题范围的最简单方法是false在程序中添加目标。如果生成的程序仍然循环,我们可以继续添加更多这样的目标。这是我想出的:

move([X, Y], [A, B]) :- X+1 < 8, Y+2 < 8, A 是 X+1, B 是 Y+2。
move([X, Y], [A, B]) :- false , X+2 < 8, Y+1 < 8, A 是 X+2, B 是 Y+1move([X, Y], [A, B]) :- false , X+2 < 8, Y-1 >= 0, A 是 X+2, B 是 Y-1move([X, Y], [A, B]) :- false , X+1 < 8, Y-2 >= 0, A 是 X+1, B 是 Y-2。
move([X, Y], [A, B]) :- X-1 >= 0, Y-2 >= 0, A 是 X-1, B 是 Y-2。
move([X, Y], [A, B]) :- false , X-2 >= 0, Y-1 >= 0, A 是 X-2, B 是 Y-1move([X, Y], [A, B]) :- false , X-2 >= 0, Y+1 < 8, A 是 X-2, B 是 Y+1move([X, Y], [A, B]) :- false , X-1 >= 0, Y+2 < 8, A 是 X-1, B 是 Y+2knight_move(X,Y,[X,Y],1) :- false , move(X,Y)。
knight_move(X,Y,[X|P],C) :- move(X,Z), knight_move(Z,Y,P,Cn), false , C 是 Cn+1。

predict_moves(X,C,P) :- knight_move(X,_,P,C), false。

?- predict_moves([1,1],3,P), false

现在被删除的所有部分对终止完全没有影响。起初这可能有点烦人,因为该代码实际上已执行,但仍然:对终止没有影响。请注意,变量Cinknight_move/4现在是一个单例!

您需要修改剩余的可见部分以消除错误。

于 2017-10-29T17:52:43.290 回答
2

问题:你写:

knight_move(X,Y,[X|P],C) :- move(X,Z), knight_move(Z,Y,P,Cn), C is Cn+1.

没有任何削减或任何其他机制阻止您采用此分支,因此 Prolog 可以继续采用此分支。此外,您应该减少计数器Cn is C-1并在递归调用之前执行此操作。

首先,我认为最好构造某种验证谓词,而不是编写所有这些边界检查:

valid_position(X,Y) :-
    X >= 0,
    Y >= 0,
    X < 8,
    Y < 8.

我们还可以构造一个谓词plusneg/3,使得 for posneg(X,DX,Y), Yis both X+DXand X-DX:

posneg(X,DX,Y) :-
    Y is X+DX.
posneg(X,DX,Y) :-
    Y is X-DX.

那么我们可以描述骑士的“可能动作”:

possible(X, Y, A, B) :-
    posneg(X,2,A),
    posneg(Y,1,B).
possible(X, Y, A, B) :-
    posneg(X,1,A),
    posneg(Y,2,B).

但这些本身并不是“有效移动”,因为我们需要检查新坐标是否有效。所以我们可以写:

move([X,Y], [A,B]) :-
    possible(X,Y,A,B),
    valid_position(A,B).

尽管这引入了一些额外的谓词,并且可能效率稍低,但现在很明显所有移动都是有效的。

现在对于knigt_move/4与计数器,我们可以编写一个子句,说如果计数器已降至零以下,则不再进行移动:

knight_move(P1,P1,[P1],C) :-
    C < 1.

如果计数是一个或多个,骑士仍然可以移动,所以我们可以写成:

knight_move(P1,PZ,[P1|PT],C) :-
    C >= 1,
    C1 is C-1,
    move(P1,P2),
    knight_move(P2,PZ,PT,C1).

或者把这一切放在一起:

valid_position(X,Y) :-
    X >= 0,
    Y >= 0,
    X < 8,
    Y < 8.

posneg(X,DX,Y) :-
    Y is X+DX.
posneg(X,DX,Y) :-
    Y is X-DX.

possible(X, Y, A, B) :-
    posneg(X,2,A),
    posneg(Y,1,B).
possible(X, Y, A, B) :-
    posneg(X,1,A),
    posneg(Y,2,B).

move([X,Y], [A,B]) :-
    possible(X,Y,A,B),
    valid_position(A,B).

knight_move(P1,P1,[P1],C) :-
    C < 1.
knight_move(P1,PZ,[P1|PT],C) :-
    C >= 1,
    C1 is C-1,
    move(P1,P2),
    knight_move(P2,PZ,PT,C1).

如果我们问我们恰好通过两次移动(以及如何)到达哪些领域,我们得到:

?- knight_move([1,1],End,Path,2).
End = [5, 3],
Path = [[1, 1], [3, 2], [5, 3]] ;
End = [5, 1],
Path = [[1, 1], [3, 2], [5, 1]] ;
End = [1, 3],
Path = [[1, 1], [3, 2], [1, 3]] ;
End = [1, 1],
Path = [[1, 1], [3, 2], [1, 1]] ;
End = [4, 4],
Path = [[1, 1], [3, 2], [4, 4]] ;
End = [4, 0],
Path = [[1, 1], [3, 2], [4, 0]] ;
End = [2, 4],
Path = [[1, 1], [3, 2], [2, 4]] ;
End = [2, 0],
Path = [[1, 1], [3, 2], [2, 0]] ;
End = [5, 1],
Path = [[1, 1], [3, 0], [5, 1]] ;
End = [1, 1],
Path = [[1, 1], [3, 0], [1, 1]] ;
End = [4, 2],
Path = [[1, 1], [3, 0], [4, 2]] ;
End = [2, 2],
Path = [[1, 1], [3, 0], [2, 2]] ;
End = [4, 4],
Path = [[1, 1], [2, 3], [4, 4]] ;
End = [4, 2],
Path = [[1, 1], [2, 3], [4, 2]] ;
End = [0, 4],
Path = [[1, 1], [2, 3], [0, 4]] ;
End = [0, 2],
Path = [[1, 1], [2, 3], [0, 2]] ;
End = [3, 5],
Path = [[1, 1], [2, 3], [3, 5]] ;
End = [3, 1],
Path = [[1, 1], [2, 3], [3, 1]] ;
End = [1, 5],
Path = [[1, 1], [2, 3], [1, 5]] ;
End = [1, 1],
Path = [[1, 1], [2, 3], [1, 1]] ;
End = [2, 4],
Path = [[1, 1], [0, 3], [2, 4]] ;
End = [2, 2],
Path = [[1, 1], [0, 3], [2, 2]] ;
End = [1, 5],
Path = [[1, 1], [0, 3], [1, 5]] ;
End = [1, 1],
Path = [[1, 1], [0, 3], [1, 1]] ;
false.

所以我们可以用两步走 24 条路径。请注意,有重复,如果我们使用setof/3我们可以确定我们可以通过两次移动达到 15 个方格。三步走有 148 条路径可以到达 30 个方格:

?- findall(End,knight_move([1,1],End,_,2),Ends), length(Ends,N).
Ends = [[5, 3], [5, 1], [1, 3], [1, 1], [4, 4], [4, 0], [2, 4], [2|...], [...|...]|...],
N = 24.

?- setof(End,Pa^knight_move([1,1],End,Pa,2),Ends), length(Ends,N).
Ends = [[0, 2], [0, 4], [1, 1], [1, 3], [1, 5], [2, 0], [2, 2], [2|...], [...|...]|...],
N = 15.

?- findall(End,knight_move([1,1],End,_,3),Ends), length(Ends,N).
Ends = [[7, 4], [7, 2], [3, 4], [3, 2], [6, 5], [6, 1], [4, 5], [4|...], [...|...]|...],
N = 148.

?- setof(End,Pa^knight_move([1,1],End,Pa,3),Ends), length(Ends,N).
Ends = [[0, 1], [0, 3], [0, 5], [0, 7], [1, 0], [1, 2], [1, 4], [1|...], [...|...]|...],
N = 30.
于 2017-10-26T10:53:12.787 回答