目前,我尝试使用 Tensorflow 的新 Estimator API 在自定义图像数据集上训练自动编码器。
到目前为止,一切正常。我唯一的问题是在模型处于评估模式时将输入和输出图像保存为摘要。我在训练模式下创建的所有图像摘要都会正确存储并显示在 Tensorboard 中。
这是我的代码:
def model_fn_autoencoder(features, labels, mode, params):
is_training = mode == ModeKeys.TRAIN
# Define model's architecture
logits = architecture_autoencoder(features, is_training=is_training)
# Loss, training and eval operations are not needed during inference.
loss = None
train_op = None
#eval_metric_ops = {}
if mode != ModeKeys.INFER:
loss = tf.reduce_mean(tf.square(logits - features))
train_op = get_train_op_fn(loss, params)
#eval_metric_ops = get_eval_metric_ops(labels, predictions)
if mode == ModeKeys.TRAIN:
for i in range(10):
tf.summary.image("Input/Train/" + str(i), tf.reshape(features[i],[1, 150, 150, 3]))
tf.summary.image("Output/Train/" + str(i), tf.reshape(logits[i],[1, 150, 150, 3]))
if mode == ModeKeys.EVAL:
for i in range(10):
tf.summary.image("Input/Eval/" + str(i), tf.reshape(features[i], [1, 150, 150, 3]))
tf.summary.image("Output/Eval/" + str(i), tf.reshape(logits[i], [1, 150, 150, 3]))
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=logits,
loss=loss,
train_op=train_op,
#eval_metric_ops=eval_metric_ops
也许有人可以告诉我我做错了什么?
更新 以下是估计器和实验创建的功能:
估算器:
def get_estimator(run_config, params):
return tf.estimator.Estimator(
model_fn=model_fn_autoencoder, # First-class function
params=params, # HParams
config=run_config # RunConfig
)
实验:
def experiment_fn(run_config, params):
run_config = run_config.replace(save_checkpoints_steps=params.min_eval_frequency)
estimator = get_estimator(run_config, params)
tf_path = 'path/to/tfrecord'
train_file = 'Crops-Faces-Negtives-150-150.tfrecord'
val_file = 'Crops-Faces-Negtives-150-150-TEST.tfrecord'
tfrecords_train = [os.path.join(tf_path, train_file)]
tfrecords_test = [os.path.join(tf_path, val_file)]
# Setup data loaders
train_input_fn = get_train_inputs(batch_size=128, tfrecord_files=tfrecords_train)
eval_input_fn = get_train_inputs(batch_size=128, tfrecord_files=tfrecords_test)
# Define the experiment
experiment = tf.contrib.learn.Experiment(
estimator=estimator, # Estimator
train_input_fn=train_input_fn, # First-class function
eval_input_fn=eval_input_fn, # First-class function
train_steps=params.train_steps, # Minibatch steps
min_eval_frequency=params.min_eval_frequency, # Eval frequency
eval_steps=10 # Number of eval batches
)
return experiment