我对线性优化有点陌生,我想把它应用到经典的调度问题上。对于人员配备问题,我不太清楚如何声明捕获正在采取的“转变”概念的功能。
我正在使用到目前为止非常棒的 ojAlgo。这是我想出的人为的小问题:
SCENARIO:
You have three drivers to make deliveries.
Driver 1 costs $10 / hr
Driver 2 costs $12 / hr
Driver 3 costs $14 / hr
Each driver can only work 3-6 hours a day.
Only one shift can be worked by a worker a day.
Operating day is 6:00 to 22:00, which must be fully covered.
Driver 2 cannot work after 11:00.
Create a schedule that minimizes the cost.
Solve Variables:
Tsx = shift start for Driver X
Tex = shift end for Driver X
Minimize:
10(Te1 - Ts1) + 12(Te2 - Ts2) + 14(Te3 - Ts3)
10Te1 - 10Te2 + 12Te2 - 12Ts2 + 14Te3 - 14Ts3
Constraints:
4.0 <= Te - Ts <= 6.0
6.0 <= Ts, Te <= 22.0
(Te1 - Ts1) + (Te2 - Ts2) + (Te3 - Ts3) = (22.0 - 6.0)
Te2 <= 11
这是我整理的 Kotlin 代码。我发现每个Driver
实例都更容易处理尽可能多的函数输入(这产生了一些有趣的 OOP 模式)。
import org.ojalgo.optimisation.ExpressionsBasedModel
import org.ojalgo.optimisation.Variable
fun main(args: Array<String>) {
val model = ExpressionsBasedModel()
val drivers = sequenceOf(
Driver(1, 10.0, model),
Driver(2, 12.0, model),
Driver(3, 14.0, model)
).map { it.driverNumber to it }
.toMap()
model.addExpression("EnsureCoverage")
.level(16.0)
.apply {
drivers.values.forEach {
set(it.shiftEnd, 1)
set(it.shiftStart, -1)
}
}
model.addExpression("Driver2OffAt11")
.upper(11)
.set(drivers[1]!!.shiftEnd, 1)
val result = model.minimise()
println(result)
}
data class Driver(val driverNumber: Int,
val rate: Double,
val model: ExpressionsBasedModel) {
val shiftStart = Variable.make("${driverNumber}shiftStart").weight(rate).lower(6).upper(22).apply(model::addVariable)
val shiftEnd = Variable.make("${driverNumber}shiftEnd").weight(rate).lower(6).upper(22).apply(model::addVariable)
init {
model.addExpression("${driverNumber}shiftLength")
.lower(4.0)
.upper(6.0)
.set(shiftEnd, 1)
.set(shiftStart, -1)
}
}
但是我得到的输出表明所有三个驱动程序都在早上 6:00 分配并同时工作。司机 1 从 6:00-11:00,司机 2 从 6:00-12:00,司机 3 从 6:00-11:00。
OPTIMAL 624.0 @ [6.0, 11.0, 6.0, 12.0, 6.0, 11.0]
我不希望它们重叠。我希望一次只分配一个司机,并且我希望整个工作日都被分配。如何表达已经占用时间的二进制状态?