@Fyodor 的回答解释了为什么您当前的方法行不通。
在函数式语言中实现这一点的一种常见方法是使用
zipperszip
(不要与函数或相关函数
混淆)。
这个想法是拉链是专注于特定部分(例如,网格中的单元格)的数据结构的表示。您可以对拉链应用转换以“移动”这个焦点,并且可以应用不同的转换来查询或“改变”相对于焦点的数据结构。这两种类型的转换都是纯函数式的——它们作用于不可变的拉链并只是创建一个新副本。
在这里,您可以从带有位置信息的无限列表的拉链开始:
data Zipper a = Zipper [a] a Int [a] deriving (Functor)
-- Zipper ls x n rs represents the doubly-infinite list (reverse ls ++
-- [x] ++ rs) viewed at offset n
instance (Show a) => Show (Zipper a) where
show (Zipper ls x n rs) =
show (reverse (take 3 ls)) ++ " " ++ show (x,n) ++ " " ++ show (take 3 rs)
这Zipper
旨在表示双重无限列表(即,在两个方向上都是无限的列表)。一个例子是:
> Zipper [-10,-20..] 0 0 [10,20..]
[-30,-20,-10] (0,0) [10,20,30]
这旨在表示集中在 value 0
、 position的所有(正和负)整数倍数的0
列表,它实际上使用两个 Haskell 无限列表,每个方向一个。
您可以定义函数来向前或向后移动焦点:
back, forth :: Zipper a -> Zipper a
back (Zipper (l:ls) x n rs) = Zipper ls l (n-1) (x:rs)
forth (Zipper ls x n (r:rs)) = Zipper (x:ls) r (n+1) rs
以便:
> forth $ Zipper [-10,-20..] 0 0 [10,20..]
[-20,-10,0] (10,1) [20,30,40]
> back $ back $ Zipper [-10,-20..] 0 0 [10,20..]
[-50,-40,-30] (-20,-2) [-10,0,10]
>
现在,aGrid
可以表示为行的拉链,每行一个值的拉链:
newtype Grid a = Grid (Zipper (Zipper a)) deriving (Functor)
instance Show a => Show (Grid a) where
show (Grid (Zipper ls x n rs)) =
unlines $ zipWith (\a b -> a ++ " " ++ b)
(map show [n-3..n+3])
(map show (reverse (take 3 ls) ++ [x] ++ (take 3 rs)))
连同一组焦点移动功能:
up, down, right, left :: Grid a -> Grid a
up (Grid g) = Grid (back g)
down (Grid g) = Grid (forth g)
left (Grid g) = Grid (fmap back g)
right (Grid g) = Grid (fmap forth g)
您可以为焦点元素定义 getter 和 setter:
set :: a -> Grid a -> Grid a
set y (Grid (Zipper ls row n rs)) = (Grid (Zipper ls (set' row) n rs))
where set' (Zipper ls' x m rs') = Zipper ls' y m rs'
get :: Grid a -> a
get (Grid (Zipper _ (Zipper _ x _ _) _ _)) = x
并且添加一个将焦点移回原点以进行显示的功能可能会很方便:
recenter :: Grid a -> Grid a
recenter g@(Grid (Zipper _ (Zipper _ _ m _) n _))
| n > 0 = recenter (up g)
| n < 0 = recenter (down g)
| m > 0 = recenter (left g)
| m < 0 = recenter (right g)
| otherwise = g
最后,使用创建全False
网格的函数:
falseGrid :: Grid Bool
falseGrid =
let falseRow = Zipper falses False 0 falses
falses = repeat False
falseRows = repeat falseRow
in Grid (Zipper falseRows falseRow 0 falseRows)
您可以执行以下操作:
> let (&) = flip ($)
> let testGrid = falseGrid & set True & right & set True & recenter
> testGrid
-3 [False,False,False] (False,0) [False,False,False]
-2 [False,False,False] (False,0) [False,False,False]
-1 [False,False,False] (False,0) [False,False,False]
0 [False,False,False] (True,0) [True,False,False]
1 [False,False,False] (False,0) [False,False,False]
2 [False,False,False] (False,0) [False,False,False]
3 [False,False,False] (False,0) [False,False,False]
> testGrid & right & left & get
True
> testGrid & left & right & get
True
> testGrid & get
True
>
完整的例子:
{-# LANGUAGE DeriveFunctor #-}
module Grid where
data Zipper a = Zipper [a] a Int [a] deriving (Functor)
-- Zipper ls x n rs represents the doubly-infinite list (reverse ls ++
-- [x] ++ rs) viewed at offset n
instance (Show a) => Show (Zipper a) where
show (Zipper ls x n rs) =
show (reverse (take 3 ls)) ++ " " ++ show (x,n) ++ " " ++ show (take 3 rs)
back, forth :: Zipper a -> Zipper a
back (Zipper (l:ls) x n rs) = Zipper ls l (n-1) (x:rs)
forth (Zipper ls x n (r:rs)) = Zipper (x:ls) r (n+1) rs
newtype Grid a = Grid (Zipper (Zipper a)) deriving (Functor)
instance Show a => Show (Grid a) where
show (Grid (Zipper ls x n rs)) =
unlines $ zipWith (\a b -> a ++ " " ++ b)
(map show [n-3..n+3])
(map show (reverse (take 3 ls) ++ [x] ++ (take 3 rs)))
up, down, right, left :: Grid a -> Grid a
up (Grid g) = Grid (back g)
down (Grid g) = Grid (forth g)
left (Grid g) = Grid (fmap back g)
right (Grid g) = Grid (fmap forth g)
set :: a -> Grid a -> Grid a
set y (Grid (Zipper ls row n rs)) = (Grid (Zipper ls (set' row) n rs))
where set' (Zipper ls' x m rs') = Zipper ls' y m rs'
get :: Grid a -> a
get (Grid (Zipper _ (Zipper _ x _ _) _ _)) = x
recenter :: Grid a -> Grid a
recenter g@(Grid (Zipper _ (Zipper _ _ m _) n _))
| n > 0 = recenter (up g)
| n < 0 = recenter (down g)
| m > 0 = recenter (left g)
| m < 0 = recenter (right g)
| otherwise = g
falseGrid :: Grid Bool
falseGrid =
let falseRow = Zipper falses False 0 falses
falses = repeat False
falseRows = repeat falseRow
in Grid (Zipper falseRows falseRow 0 falseRows)
(&) = flip ($)
testGrid :: Grid Bool
testGrid = falseGrid & set True & right & set True & recenter
main = do
print $ testGrid & get
print $ testGrid & left & get
print $ testGrid & left & right & get
print $ testGrid & right & left & get