我正在使用 tensorflow 构建卷积神经网络。给定一个形状的张量 (none, 16, 16, 4, 192),我想执行一个转置卷积,得到形状 (none, 32, 32, 7, 192)。
[2,2,4,192,192] 的过滤器大小和 [2,2,1,1,1] 的步幅会产生我想要的输出形状吗?
我正在使用 tensorflow 构建卷积神经网络。给定一个形状的张量 (none, 16, 16, 4, 192),我想执行一个转置卷积,得到形状 (none, 32, 32, 7, 192)。
[2,2,4,192,192] 的过滤器大小和 [2,2,1,1,1] 的步幅会产生我想要的输出形状吗?
是的,你几乎是对的。
一个小的更正是tf.nn.conv3d_transpose
期望NCDHW
或NDHWC
输入格式(您的似乎是NHWDC
),并且过滤器形状预计是[depth, height, width, output_channels, in_channels]
。filter
这会影响和中的维度顺序stride
:
# Original format: NHWDC.
original = tf.placeholder(dtype=tf.float32, shape=[None, 16, 16, 4, 192])
print original.shape
# Convert to NDHWC format.
input = tf.reshape(original, shape=[-1, 4, 16, 16, 192])
print input.shape
# input shape: [batch, depth, height, width, in_channels].
# filter shape: [depth, height, width, output_channels, in_channels].
# output shape: [batch, depth, height, width, output_channels].
filter = tf.get_variable('filter', shape=[4, 2, 2, 192, 192], dtype=tf.float32)
conv = tf.nn.conv3d_transpose(input,
filter=filter,
output_shape=[-1, 7, 32, 32, 192],
strides=[1, 1, 2, 2, 1],
padding='SAME')
print conv.shape
final = tf.reshape(conv, shape=[-1, 32, 32, 7, 192])
print final.shape
哪个输出:
(?, 16, 16, 4, 192)
(?, 4, 16, 16, 192)
(?, 7, 32, 32, 192)
(?, 32, 32, 7, 192)