我将我的 spark 数据帧输出保存为带有分区的 scala 中的 csv 文件。这就是我在Zeppelin中的做法。
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
import org.apache.spark.{ SparkConf, SparkContext }
import java.sql.{Date, Timestamp}
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
import org.apache.spark.sql.functions.udf
import org.apache.spark.sql.functions.input_file_name
import org.apache.spark.sql.functions.regexp_extract
val get_cus_val = spark.udf.register("get_cus_val", (filePath: String) => filePath.split("\\.")(3))
val rdd = sc.textFile("s3://trfsmallfffile/FinancialLineItem/MAIN")
val header = rdd.filter(_.contains("LineItem.organizationId")).map(line => line.split("\\|\\^\\|")).first()
val schema = StructType(header.map(cols => StructField(cols.replace(".", "_"), StringType)).toSeq)
val data = sqlContext.createDataFrame(rdd.filter(!_.contains("LineItem.organizationId")).map(line => Row.fromSeq(line.split("\\|\\^\\|").toSeq)), schema)
val schemaHeader = StructType(header.map(cols => StructField(cols.replace(".", "."), StringType)).toSeq)
val dataHeader = sqlContext.createDataFrame(rdd.filter(!_.contains("LineItem.organizationId")).map(line => Row.fromSeq(line.split("\\|\\^\\|").toSeq)), schemaHeader)
val df1resultFinal=data.withColumn("DataPartition", get_cus_val(input_file_name))
val rdd1 = sc.textFile("s3://trfsmallfffile/FinancialLineItem/INCR")
val header1 = rdd1.filter(_.contains("LineItem.organizationId")).map(line => line.split("\\|\\^\\|")).first()
val schema1 = StructType(header1.map(cols => StructField(cols.replace(".", "_"), StringType)).toSeq)
val data1 = sqlContext.createDataFrame(rdd1.filter(!_.contains("LineItem.organizationId")).map(line => Row.fromSeq(line.split("\\|\\^\\|").toSeq)), schema1)
import org.apache.spark.sql.expressions._
val windowSpec = Window.partitionBy("LineItem_organizationId", "LineItem_lineItemId").orderBy($"TimeStamp".cast(LongType).desc)
val latestForEachKey = data1.withColumn("rank", rank().over(windowSpec)).filter($"rank" === 1).drop("rank", "TimeStamp")
val dfMainOutput = df1resultFinal.join(latestForEachKey, Seq("LineItem_organizationId", "LineItem_lineItemId"), "outer")
.select($"LineItem_organizationId", $"LineItem_lineItemId",
when($"DataPartition_1".isNotNull, $"DataPartition_1").otherwise($"DataPartition").as("DataPartition"),
when($"StatementTypeCode_1".isNotNull, $"StatementTypeCode_1").otherwise($"StatementTypeCode").as("StatementTypeCode"),
when($"FinancialConceptLocalId_1".isNotNull, $"FinancialConceptLocalId_1").otherwise($"FinancialConceptLocalId").as("FinancialConceptLocalId"),
when($"FinancialConceptGlobalId_1".isNotNull, $"FinancialConceptGlobalId_1").otherwise($"FinancialConceptGlobalId").as("FinancialConceptGlobalId"),
when($"FinancialConceptCodeGlobalSecondaryId_1".isNotNull, $"FinancialConceptCodeGlobalSecondaryId_1").otherwise($"FinancialConceptCodeGlobalSecondaryId").as("FinancialConceptCodeGlobalSecondaryId"),
when($"FFAction_1".isNotNull, $"FFAction_1").otherwise($"FFAction|!|").as("FFAction|!|"))
.filter(!$"FFAction|!|".contains("D|!|"))
val dfMainOutputFinal = dfMainOutput.na.fill("").select($"DataPartition",$"StatementTypeCode",concat_ws("|^|", dfMainOutput.schema.fieldNames.filter(_ != "DataPartition").map(c => col(c)): _*).as("concatenated"))
val headerColumn = dataHeader.columns.toSeq
val header = headerColumn.mkString("", "|^|", "|!|").dropRight(3)
val dfMainOutputFinalWithoutNull = dfMainOutputFinal.withColumn("concatenated", regexp_replace(col("concatenated"), "|^|null", "")).withColumnRenamed("concatenated", header)
dfMainOutputFinalWithoutNull.repartition(1).write.partitionBy("DataPartition","StatementTypeCode")
.format("csv")
.option("nullValue", "")
.option("delimiter", "\t")
.option("quote", "\u0000")
.option("header", "true")
.option("codec", "gzip")
.save("s3://trfsmallfffile/FinancialLineItem/output")
val FFRowCount =dfMainOutputFinalWithoutNull.groupBy("DataPartition","StatementTypeCode").count
FFRowCount.coalesce(1).write.format("com.databricks.spark.xml")
.option("rootTag", "FFFileType")
.option("rowTag", "FFPhysicalFile")
.save("s3://trfsmallfffile/FinancialLineItem/Descr")
现在文件保存在预期的分区文件夹结构中。
现在我的要求是重命名所有零件文件并将其保存在一个目录中。文件名将作为文件夹结构的名称。
例如我有一个文件保存在folder/DataPartition=Japan/PartitionYear=1971/part-00001-87a61115-92c9-4926-a803-b46315e55a08.c000.csv.gz
现在我希望我的文件名是
Japan.1971.1.txt.gz
Japan.1971.2.txt.gz
我的工作完成后,我在 java map-reduce 中完成了这项工作,然后我正在读取 HDFS 文件系统,然后将其移动到不同的位置作为重命名的文件名。
但是如何在 spark SCALA 中的 AWS S3 文件系统中执行此操作。
据我研究,没有直接的方法可以重命名 spark 数据框输出文件名。
但是有一些实现可以使用MultipleOutputs
作为saveAsHadoopFile在作业本身中完成,但如何做到这一点?
我在 scala 中寻找一些示例代码
就像完成工作后,我们需要从 s3 读取文件,将其扩孔并将其移动到其他位置。