我知道类似的问题已经在 stackoverflow 和互联网上被问过好几次了,但我只是无法找到以下问题的解决方案:我正在尝试在 tensorflow 及其Estimator API中构建一个有状态的 LSTM 模型. 我尝试了Tensorflow 的解决方案,在 RNN 中保存状态的最佳方法?,只要我使用的是静态的,它就可以工作batch_size
。具有动态 batch_size 会导致以下问题:
ValueError: initial_value 必须具有指定的形状:Tensor("DropoutWrapperZeroState/MultiRNNCellZeroState/DropoutWrapperZeroState/LSTMCellZeroState/zeros:0", shape=(?, 200), dtype=float32)
设置tf.Variable(...., validate_shape=False)
只是将问题移到图表的下方:
Traceback (most recent call last):
File "model.py", line 576, in <module>
tf.app.run(main=run_experiment)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/app.py", line 48, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "model.py", line 137, in run_experiment
hparams=params # HParams
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/learn_runner.py", line 210, in run
return _execute_schedule(experiment, schedule)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/learn_runner.py", line 47, in _execute_schedule
return task()
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/experiment.py", line 495, in train_and_evaluate
self.train(delay_secs=0)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/experiment.py", line 275, in train
hooks=self._train_monitors + extra_hooks)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/experiment.py", line 660, in _call_train
hooks=hooks)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/estimator/estimator.py", line 241, in train
loss = self._train_model(input_fn=input_fn, hooks=hooks)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/estimator/estimator.py", line 560, in _train_model
model_fn_lib.ModeKeys.TRAIN)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/estimator/estimator.py", line 545, in _call_model_fn
features=features, labels=labels, **kwargs)
File "model.py", line 218, in model_fn
output, state = get_model(features, params)
File "model.py", line 567, in get_model
model = lstm(inputs, params)
File "model.py", line 377, in lstm
output, new_states = tf.nn.dynamic_rnn(multicell, inputs=inputs, initial_state = states)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn.py", line 574, in dynamic_rnn
dtype=dtype)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn.py", line 737, in _dynamic_rnn_loop
swap_memory=swap_memory)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/control_flow_ops.py", line 2770, in while_loop
result = context.BuildLoop(cond, body, loop_vars, shape_invariants)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/control_flow_ops.py", line 2599, in BuildLoop
pred, body, original_loop_vars, loop_vars, shape_invariants)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/control_flow_ops.py", line 2549, in _BuildLoop
body_result = body(*packed_vars_for_body)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn.py", line 722, in _time_step
(output, new_state) = call_cell()
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn.py", line 708, in <lambda>
call_cell = lambda: cell(input_t, state)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn_cell_impl.py", line 752, in __call__
output, new_state = self._cell(inputs, state, scope)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn_cell_impl.py", line 180, in __call__
return super(RNNCell, self).__call__(inputs, state)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/layers/base.py", line 441, in __call__
outputs = self.call(inputs, *args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn_cell_impl.py", line 916, in call
cur_inp, new_state = cell(cur_inp, cur_state)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn_cell_impl.py", line 752, in __call__
output, new_state = self._cell(inputs, state, scope)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn_cell_impl.py", line 180, in __call__
return super(RNNCell, self).__call__(inputs, state)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/layers/base.py", line 441, in __call__
outputs = self.call(inputs, *args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn_cell_impl.py", line 542, in call
lstm_matrix = _linear([inputs, m_prev], 4 * self._num_units, bias=True)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn_cell_impl.py", line 1002, in _linear
raise ValueError("linear is expecting 2D arguments: %s" % shapes)
ValueError: linear is expecting 2D arguments: [TensorShape([Dimension(None), Dimension(62)]), TensorShape(None)]
根据github issue 2838,无论如何都不建议使用不可训练的变量(???),这就是我继续寻找其他解决方案的原因。
现在我在我的model_fn
:
def rnn_placeholders(state):
"""Convert RNN state tensors to placeholders with the zero state as default."""
if isinstance(state, tf.contrib.rnn.LSTMStateTuple):
c, h = state
c = tf.placeholder_with_default(c, c.shape, c.op.name)
h = tf.placeholder_with_default(h, h.shape, h.op.name)
return tf.contrib.rnn.LSTMStateTuple(c, h)
elif isinstance(state, tf.Tensor):
h = state
h = tf.placeholder_with_default(h, h.shape, h.op.name)
return h
else:
structure = [rnn_placeholders(x) for x in state]
return tuple(structure)
state = rnn_placeholders(cell.zero_state(batch_size, tf.float32))
for tensor in flatten(state):
tf.add_to_collection('rnn_state_input', tensor)
x, new_state = tf.nn.dynamic_rnn(...)
for tensor in flatten(new_state):
tf.add_to_collection('rnn_state_output', tensor)
但不幸的是,在使用API 等时,我不知道如何使用占位符new_state
将其值反馈给state
每次迭代的占位符。由于我对 Tensorflow 很陌生,我认为我在这里缺乏概念知识。是否可以使用自定义?:tf.Estimator
SessionRunHook
class UpdateHook(tf.train.SessionRunHook):
def before_run(self, run_context):
run_args = super(UpdateHook, self).before_run(run_context)
run_args = tf.train.SessionRunArgs(new_state)
#print(run_args)
return run_args
def after_run(self, run_context, run_values):
#run_values gives the actual value of new_state.
# How to update now the state placeholder??
有没有人知道如何解决这个问题?非常感谢提示和技巧!!!非常感谢!
PS:如果有不清楚的地方请告诉我;)
编辑:不幸的是,我正在使用新的 tf.data API,不能 StateSavingRNNEstimator
像 Eugene 建议的那样使用。