我正在使用 Tensorflow 实现 Canny 算法(这是使用边界作为评估指标所必需的,但这是题外话)。其中一个步骤是计算“非最大抑制”,这包括将 3x3 区域中的中心元素归零,除非两个特定的邻居更小。更多细节在这里。
如何使用 Tensorflow 实现此操作?
我实际上正在使用 Keras,但 Tensorflow 解决方案也可以工作,作为参考,我的代码到目前为止看起来像这样:
def canny(img):
'''Canny border detection. The input should be a grayscale image.'''
gauss_kernel = np.array([[2, 4, 5, 4, 2],
[4, 9, 12, 9, 4],
[5, 12, 15, 12, 5],
[4, 9, 12, 9, 4],
[2, 4, 5, 4, 2]]).reshape(5, 5, 1, 1)
gauss_kernel = K.variable(1./159 * gauss_kernel)
Gx = K.variable(np.array([[-1., 0. ,1.],
[-2., 0., 2.],
[-1., 0., 1.]]).reshape(3, 3, 1, 1))
Gy = K.variable(np.array([[-1., -2., -1.],
[ 0., 0., 0.],
[ 1., 2., 1.]]).reshape(3, 3, 1, 1))
# Smooth image
smoothed = K.conv2d(img, gauss_kernel, padding='same')
# Derivative in x
Dx = K.conv2d(smoothed, Gx, padding='same')
# Derivative in y
Dy = K.conv2d(smoothed, Gy, padding='same')
# Take gradient strength
G = K.sqrt(K.square(Dx) + K.square(Dy))
# TODO: Non-maximum Suppression & Hysteresis Thresholding
return G