在自定义数据集(店面图像)上进行对象检测训练,针对单个类(总共 285 个图像),在 CPU 上本地运行,几个步骤后8GB RAM 被杀死。
我正在关注这个博客作为参考。
这是控制台日志
(tensorflow) rajaram@rajaram-Lenovo-ideapad-110-15ISK:~/tensorflow/models$ python object_detection/train.py \
> --logtostderr \
> --pipeline_config_path=/home/rajaram/tensorflow/models/object_detection/models/sf_od_model/ssd_mobilenet_v1_sf_train.config \
> --train_dir=/home/rajaram/tensorflow/models/object_detection/models/sf_od_model/train
INFO:tensorflow:Summary name Learning Rate is illegal; using Learning_Rate instead.
WARNING:tensorflow:From /home/rajaram/tensorflow/models/object_detection/meta_architectures/ssd_meta_arch.py:607: all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Please use tf.global_variables instead.
INFO:tensorflow:Summary name /clone_loss is illegal; using clone_loss instead.
2017-09-26 22:15:08.121785: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-26 22:15:08.122313: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-26 22:15:08.123308: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-09-26 22:15:08.124144: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-26 22:15:08.124658: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
2017-09-26 22:15:08.953929: I tensorflow/core/common_runtime/simple_placer.cc:697] Ignoring device specification /device:GPU:0 for node 'prefetch_queue_Dequeue' because the input edge from 'prefetch_queue' is a reference connection and already has a device field set to /device:CPU:0
INFO:tensorflow:Restoring parameters from /home/rajaram/tensorflow/models/object_detection/models/sf_od_model/ssd_mobilenet_v1_coco_11_06_2017/model.ckpt
INFO:tensorflow:Starting Session.
INFO:tensorflow:Saving checkpoint to path /home/rajaram/tensorflow/models/object_detection/models/sf_od_model/train/model.ckpt
INFO:tensorflow:Starting Queues.
INFO:tensorflow:global_step/sec: 0
INFO:tensorflow:Recording summary at step 0.
INFO:tensorflow:global_step/sec: 0
INFO:tensorflow:global_step/sec: 0
INFO:tensorflow:global_step/sec: 0
INFO:tensorflow:Recording summary at step 0.
INFO:tensorflow:Recording summary at step 0.
INFO:tensorflow:Recording summary at step 0.
INFO:tensorflow:global_step/sec: 0
INFO:tensorflow:Saving checkpoint to path /home/rajaram/tensorflow/models/object_detection/models/sf_od_model/train/model.ckpt
INFO:tensorflow:global_step/sec: 0
INFO:tensorflow:Recording summary at step 1.
INFO:tensorflow:Recording summary at step 1.
INFO:tensorflow:global_step/sec: 0.00238991
INFO:tensorflow:global_step/sec: 0
INFO:tensorflow:Recording summary at step 1.
INFO:tensorflow:global_step/sec: 0
INFO:tensorflow:global step 1: loss = 14.4365 (801.196 sec/step)
INFO:tensorflow:Recording summary at step 1.
INFO:tensorflow:Recording summary at step 1.
INFO:tensorflow:global_step/sec: 0
INFO:tensorflow:Recording summary at step 1.
INFO:tensorflow:global step 2: loss = 12.9940 (173.981 sec/step)
INFO:tensorflow:Recording summary at step 2.
INFO:tensorflow:Recording summary at step 3.
INFO:tensorflow:global step 3: loss = 12.4866 (166.656 sec/step)
INFO:tensorflow:Saving checkpoint to path /home/rajaram/tensorflow/models/object_detection/models/sf_od_model/train/model.ckpt
INFO:tensorflow:Recording summary at step 3.
INFO:tensorflow:Saving checkpoint to path /home/rajaram/tensorflow/models/object_detection/models/sf_od_model/train/model.ckpt
INFO:tensorflow:global step 4: loss = 11.2386 (162.260 sec/step)
INFO:tensorflow:Recording summary at step 4.
INFO:tensorflow:Recording summary at step 4.
INFO:tensorflow:Recording summary at step 5.
INFO:tensorflow:global step 5: loss = 10.8210 (416.903 sec/step)
INFO:tensorflow:Recording summary at step 5.
Killed
(tensorflow) rajaram@rajaram-Lenovo-ideapad-110-15ISK:~/tensorflow/models$
我的想法和问题
1)图像尺寸有问题吗?- 我的图像分布如下:<= 400x300 (5%)、400x300 和 640x480 之间 (22%)、640x480 和 800x600 (63%) 和 > 800x600 (22%)。尽管尺寸约为 400x300 的图像足以识别购物板,但在我的数据集中存在更高分辨率的倾向,因为下一步是在这些板上进行文本识别。
- 这种想法对吗?
- 我是否应该将图像调整为更小的尺寸(如果是 - 什么尺寸合适)并在重新开始整个过程之前重新进行注释?
我可以训练 Oxford-IIIT Pet 数据(约 7.9k 图像 - 耗时约 13 小时)2000 步(配置文件的 train_config 部分中的 num_steps = 2000),而不会崩溃或被杀死。所以,我认为只有 285 个图像应该能够在 CPU 本身上运行。
2)交换内存有问题吗?- 我还检查了其他类似的帖子(增加交换空间建议,没有后续和另一个增加交换内存建议),但因为我可以在我当前的系统设置上训练 Oxford-IIIT 宠物数据集,训练为少至 285 张图像不应终止该过程。
- 我的想法正确吗?
- 如果不是,这确实是一个解决方案,那么我需要指针和明确的步骤来做到这一点。
我想知道出了什么问题并让它在本地运行。我希望我已经提供了足够的信息来获得帮助。如果没有,请告诉我需要什么。
---------------------------
系统信息
- 您正在使用的模型的顶级目录是什么: tensorflow/models(尚未更新到新的文件夹结构)
- 我是否编写了自定义代码(而不是使用 TensorFlow 中提供的股票示例脚本):是 - 最小的更改(按照我自己的数据集的 Dat Trans 模板 - Github)
- 操作系统平台和发行版(例如,Linux Ubuntu 16.04): Ubuntu 16.04.3 LTS
- TensorFlow 安装自(源代码或二进制文件):二进制文件(进入虚拟环境)
- TensorFlow 版本(使用下面的命令): 1.3.0
- Bazel 版本(如果从源代码编译): NA
- CUDA/cuDNN 版本:不适用
- GPU 型号和内存: NA
- 重现的确切命令: python object_detection/train.py --logtostderr --pipeline_config_path=/home/rajaram/tensorflow/models/object_detection/models/sf_od_model/ssd_mobilenet_v1_sf_train.config --train_dir=/home/rajaram/tensorflow/models/object_detection /models/sf_od_model/train