1

我是第一次尝试 Holoviews,我想重现这里描述的这个动画“Gapminder”情节。

代码运行,但我不知道如何处理输出,以便将其显示在 Jupyter Notebook 中(我认为这是可能的,因为 Jupyter 可以显示任意 HTML)。

# Get HoloViews plot and attach document
doc = curdoc()
hvplot = BokehRenderer.get_plot(hvgapminder, doc)

# Make a bokeh layout and add it as the Document root
plot = layout([[hvplot.state], [slider, button]], sizing_mode='fixed')
doc.add_root(plot)

具体来说,我应该如何处理结果dochvplot对象?

4

1 回答 1

2

该特定示例结合了 HoloView 和散景组件,散景小部件无法轻松地与笔记本中的 Python 进行通信。但是,您可以使用 holoviews 'scrubber' 小部件来实现相同的目的:

import pandas as pd
import numpy as np
import holoviews as hv
from bokeh.sampledata import gapminder

hv.extension('bokeh')

# Switch to sending data 'live' and using the scrubber widget
%output widgets='live' holomap='scrubber'

# Declare dataset
panel = pd.Panel({'Fertility': gapminder.fertility,
                  'Population': gapminder.population,
                  'Life expectancy': gapminder.life_expectancy})
gapminder_df = panel.to_frame().reset_index().rename(columns={'minor': 'Year'})
gapminder_df = gapminder_df.merge(gapminder.regions.reset_index(), on='Country')
gapminder_df['Country'] = gapminder_df['Country'].astype('str')
gapminder_df['Group'] = gapminder_df['Group'].astype('str')
gapminder_df.Year = gapminder_df.Year.astype('f')
ds = hv.Dataset(gapminder_df)

# Apply dimension labels and ranges
kdims = ['Fertility', 'Life expectancy']
vdims = ['Country', 'Population', 'Group']
dimensions = {
    'Fertility' : dict(label='Children per woman (total fertility)', range=(0, 10)),
    'Life expectancy': dict(label='Life expectancy at birth (years)', range=(15, 100)),
    'Population': ('population', 'Population')
}

# Create Points plotting fertility vs life expectancy indexed by Year
gapminder_ds = ds.redim(**dimensions).to(hv.Points, kdims, vdims, 'Year')

# Define annotations
text = gapminder_ds.clone({yr: hv.Text(1.2, 25, str(int(yr)), fontsize=30)
                           for yr in gapminder_ds.keys()})

# Define options
opts = {'plot': dict(width=1000, height=600,tools=['hover'], size_index='Population',
                     color_index='Group', size_fn=np.sqrt, title_format="{label}"),
       'style': dict(cmap='Set1', size=0.3, line_color='black', alpha=0.6)}
text_opts = {'style': dict(text_font_size='52pt', text_color='lightgray')}


# Combine Points and Text
(gapminder_ds({'Points': opts}) * text({'Text': text_opts})).relabel('Gapminder Demo')
于 2017-09-28T14:41:49.137 回答