我有这样的面板中组织的数据(请参阅下面的dput()
函数输出):
Country Year Month Var1 Var2
C1 2000 1 0 0
C1 2000 2 1 0
C1 2000 3 2 1
...
C2 2000 1 1 1
C2 2000 2 1 2
C2 2000 3 3 1
...
从 1999 年到 2008 年,该数据集共有 27 个国家,但面板不平衡。
我希望能够为整个数据集估计一个模型,并从这个模型对数据集中的每个国家进行预测。我一直在研究 King 等人的 YourCast 包。但是由于我将所有数据都放在一个文件中,因此我不知道如何创建 yourcast() 函数将接受的数据对象。有谁知道如何做到这一点,而无需经历手动将数据文件拆分为不同横截面的繁琐过程?
PS:来自数据集的 48 个观察值:
structure(list(Country = structure(c(1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("Belgium",
"Denmark", "Czech.Republic", "Germany", "Estonia", "Greece",
"Spain", "France", "Ireland", "Italy", "Cyprus", "Latvia", "Lithuania",
"Luxembourg", "Hungary", "Malta", "Netherlands", "Austria", "Poland",
"Portugal", "Slovenia", "Slovakia", "Bulgaria", "Romania", "Finland",
"Sweden", "UK"), class = "factor"), Year = c(2003, 2003, 2003,
2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2004, 2004,
2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2003,
2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003,
2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004,
2004, 2005), Month = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1), Yes = c(21L,
18L, 20L, 19L, 31L, 39L, 28L, 2L, 28L, 21L, 26L, 50L, 14L, 28L,
50L, 83L, 10L, 25L, 22L, 6L, 22L, 39L, 32L, 56L, 22L, 17L, 20L,
20L, 32L, 39L, 23L, 2L, 27L, 21L, 28L, 48L, 14L, 27L, 50L, 89L,
10L, 25L, 22L, 4L, 22L, 38L, 31L, 56L, 16L), No = c(0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 4L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 1L, 2L, 0L, 0L, 0L, 2L, 0L, 1L, 1L, 0L, 0L), Abstention = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 3L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
), No.Neg = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 1L, 0L), Abstention.Neg = c(0L, 0L, 0L, 1L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), Yes.Neg = c(1L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 1L,
0L, 0L, 2L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L
), Yes.Pos = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L), Missing = c(0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), Enlargement = c(0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1)), .Names = c("Country", "Year", "Month", "Yes",
"No", "Abstention", "No.Neg", "Abstention.Neg", "Yes.Neg", "Yes.Pos",
"Missing", "Enlargement"), row.names = c(1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 61L, 62L, 63L, 64L, 65L, 66L, 67L,
68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L, 78L, 79L, 80L,
81L, 82L, 83L, 84L, 85L), class = "data.frame")