我对 vars 包中的加拿大数据拟合了一个向量自回归模型,然后根据 1.64 的 t 值进行限制。
library(vars)
data("Canada")
var.can1 <- VAR(Canada, p = 2, type = "none")
summary(var.can1)
VAR Estimation Results:
=========================
Endogenous variables: e, prod, rw, U
Deterministic variables: none
Sample size: 82
Log Likelihood: -184.045
Roots of the characteristic polynomial:
1 0.9783 0.9113 0.9113 0.7474 0.1613 0.1613 0.1572
Call:
VAR(y = Canada, p = 2, type = "none")
# AIC BIC etc.
VARSelect(Canada, lag.max = 2, type = "none")$criteria
var.can2 <- restrict(var.can1, method = "ser", thresh = 1.64)
summary(var.can2)
VAR Estimation Results:
=========================
Endogenous variables: e, prod, rw, U
Deterministic variables: none
Sample size: 82
Log Likelihood: -191.376
Roots of the characteristic polynomial:
1 0.9742 0.9272 0.9272 0.7753 0.2105 0.2105 0.005071
Call:
VAR(y = Canada, p = 2, type = "none")
然后我想获得修改后的信息标准,但看不到这样做的方法。有谁知道怎么做?
编辑 1
所以我尝试为无限制模型推导出 AIC:
vars::VARselect(Canada, lag.max = 2, type = "none")$criteria
1 2
AIC(n) -5.600280680 -6.082112784
HQ(n) -5.411741957 -5.705035337
SC(n) -5.130676924 -5.142905272
FPE(n) 0.003697972 0.002289041
s <- summary(var.can1)
s$covres
e prod rw U
e 0.140560073 0.0056629572 -0.03893668 -0.0798565366
prod 0.005662957 0.4358209615 0.06689687 -0.0005118419
rw -0.038936678 0.0668968657 0.60125872 0.0309232731
U -0.079856537 -0.0005118419 0.03092327 0.0899478736
从新介绍到多时间序列分析 Luetkepohl,Helmut 2007,第 147 页:
$$AIC(m) = ln(det(covres)) + \frac{2mk^2}{T}$$
m 是滞后阶数,k 是系列数,T 是样本量
但我得到:
-6.451984 + 2*2*4^2/84 = -5.69
不等于 -5.600280680