1

我正在使用 Watson Personality Insights 从正文中获取结果。我从 Node.js Personality 洞察演示中获得的结果与我在使用 Python SDK 时获得的结果不同。

Python脚本:

with open('input_file.txt', encoding='utf-8') as input_file:
    profile = personality_insights.profile(
        input_file.read(), content_type='text/plain;charset=utf-8',
        raw_scores=True, consumption_preferences=True)

    print(profile)

Python 输出:(仅添加宜人性分数以保持字符数限制)

{
        "trait_id": "big5_agreeableness",
        "name": "Agreeableness",
        "category": "personality",
        "percentile": 0.2641097108346445,
        "raw_score": 0.717124182764663,
        "children": [{
                "trait_id": "facet_altruism",
                "name": "Altruism",
                "category": "personality",
                "percentile": 0.5930367181429955,
                "raw_score": 0.7133462509414262
            },
            {
                "trait_id": "facet_cooperation",
                "name": "Cooperation",
                "category": "personality",
                "percentile": 0.49207238025136585,
                "raw_score": 0.5781918028043768
            },
            {
                "trait_id": "facet_modesty",
                "name": "Modesty",
                "category": "personality",
                "percentile": 0.7504251965616365,
                "raw_score": 0.4840369062774408
            },
            {
                "trait_id": "facet_morality",
                "name": "Uncompromising",
                "category": "personality",
                "percentile": 0.4144135962141314,
                "raw_score": 0.6156094284542545
            },
            {
                "trait_id": "facet_sympathy",
                "name": "Sympathy",
                "category": "personality",
                "percentile": 0.8204286367393345,
                "raw_score": 0.6984933017082747
            },
            {
                "trait_id": "facet_trust",
                "name": "Trust",
                "category": "personality",
                "percentile": 0.5357101531393991,
                "raw_score": 0.5894943830064112
            }
        ]
    }

Node.js 脚本:

fs.readFile('input_file.txt', 'utf-8', function (err,data) {
   var params={};
   params.text=data;
   params.content_type='text/plain; charset=utf-8';
   params.raw_scores=true;
   params.consumption_preferences=true;

   personality_insights.profile(params, function(error, response) {
    console.log(JSON.stringify(response));
   });
});

Node.js 输出:

{
                "id": "Agreeableness",
                "name": "Agreeableness",
                "category": "personality",
                "percentage": 0.2798027409516949,
                "sampling_error": 0.101059064,
                "children": [{
                    "id": "Altruism",
                    "name": "Altruism",
                    "category": "personality",
                    "percentage": 0.597937110939136,
                    "sampling_error": 0.07455418080000001
                }, {
                    "id": "Cooperation",
                    "name": "Cooperation",
                    "category": "personality",
                    "percentage": 0.46813215597029234,
                    "sampling_error": 0.0832951302
                }, {
                    "id": "Modesty",
                    "name": "Modesty",
                    "category": "personality",
                    "percentage": 0.7661123497302398,
                    "sampling_error": 0.0594182198
                }, {
                    "id": "Morality",
                    "name": "Uncompromising",
                    "category": "personality",
                    "percentage": 0.42178661415240626,
                    "sampling_error": 0.0662383546
                }, {
                    "id": "Sympathy",
                    "name": "Sympathy",
                    "category": "personality",
                    "percentage": 0.8252000440378008,
                    "sampling_error": 0.1022423736
                }, {
                    "id": "Trust",
                    "name": "Trust",
                    "category": "personality",
                    "percentage": 0.5190032062613837,
                    "sampling_error": 0.0600995984
                }]
            }

两者的输入文件相同:

Operations at ports in the U.S. Southeast are shut as the region copes with the changing path of one hurricane even as another is churning toward the region. Hurricane Irma was downgraded to a Category 1 storm as it pushed up through western and central Florida, the WSJ’s Arian Campo-Flores and Joseph De Avila report. That put the Port Tampa Bay in its path but left major trade gateways on the Atlantic coast, including Jacksonville, Georgia’s Port of Savannah and South Carolina Port of Charleston largely outside the storm’s strongest force. The second Category 4 storm to reach the U.S. this season lashed the Miami area with powerful winds and sheets of rain, and both Florida coasts were preparing for severe storm surges and flooding as it headed north and likely toward Georgia. With the storm following so soon after Hurricane Harvey hit the Gulf Coast and a third storm, Jose, heading north, the U.S. issued a rare waiver of the Jones Act, the federal law that prohibits foreign ships from operating in domestic sea routes, the WSJ’s Costas Paris reports. The action will allow foreign tankers to distribute fuel to hurricane-stricken areas.

从这两种方法收到的值不匹配。content_type=text/plain当添加charset=utf-8属性似乎不会对通过 Python 代码接收到的结果产生影响时,两个脚本的值相同。

4

1 回答 1

0

As you can see, when the params are set for text/plain, Watson API suggest to use the param: Accept: application/json because is the desired content type of the response, you can choose CSV or JSON format.

For example:

profile(text, content_type='text/plain', content_language=None,
  accept='application/json', accept_language=None, raw_scores=False,
  consumption_preferences=False, csv_headers=False)

Important: In your example with Python, you set just to print the profile, and not use the indent for getting the basic pretty printing result like the Node return. I think maybe it is your problem with the return.

So try to use print(json.dumps(profile, indent=2)) instead of print(profile)

I did the example from the API Reference with Python and Node, and I get the same result.

Python example for using Personality Insight:

personality_insights = PersonalityInsightsV3(
  version='2016-10-20',
  username='{username}',
  password='{password}')

with open(join(dirname(__file__), './profile.json')) as profile_json:
  profile = personality_insights.profile(
    profile_json.read(), content_type='application/json',
    raw_scores=True, consumption_preferences=True)

print(json.dumps(profile, indent=2))

Node example for using Personality Insight:

var PersonalityInsightsV3 = require('watson-developer-cloud/personality-insights/v3');
var personality_insights = new PersonalityInsightsV3({
  username: '{username}',
  password: '{password}',
  version_date: '2016-10-20'
});

var params = {
  // Get the content items from the JSON file.
  content_items: require('./profile.json').contentItems,
  consumption_preferences: true,
  raw_scores: true,
  headers: {
    'accept-language': 'en',
    'accept': 'application/json'
  }
};

personality_insights.profile(params, function(error, response) {
  if (error)
    console.log('Error:', error);
  else
    console.log(JSON.stringify(response, null, 2));
  }
);
于 2017-09-13T13:23:41.647 回答