@Michael Jaison G 答案是正确的。但是,当您还想使用某些需要评估图形部分的 session_run_hooks 时,它不起作用,例如 LoggingTensorHook 或 SummarySaverHook。下面的示例将导致错误:
import tensorflow as tf
dataset_train = tf.data.Dataset.range(10)
dataset_val = tf.data.Dataset.range(90, 100)
iter_train_handle = dataset_train.make_one_shot_iterator().string_handle()
iter_val_handle = dataset_val.make_one_shot_iterator().string_handle()
handle = tf.placeholder(tf.string, shape=[])
iterator = tf.data.Iterator.from_string_handle(
handle, dataset_train.output_types, dataset_train.output_shapes)
feature = iterator.get_next()
pred = feature * feature
tf.summary.scalar('pred', pred)
global_step = tf.train.create_global_step()
summary_hook = tf.train.SummarySaverHook(save_steps=5,
output_dir="summaries", summary_op=tf.summary.merge_all())
with tf.train.MonitoredTrainingSession(hooks=[summary_hook]) as sess:
handle_train, handle_val = sess.run([iter_train_handle, iter_val_handle])
for step in range(10):
feat = sess.run(feature, feed_dict={handle: handle_train})
pred_ = sess.run(pred, feed_dict={handle: handle_train})
print('train: ', feat)
print('pred: ', pred_)
if step % 3 == 0:
print('val', sess.run(feature, feed_dict={handle: handle_val}))
这将失败并出现错误:
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder' with dtype string
[[Node: Placeholder = Placeholder[dtype=DT_STRING, shape=[], _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
[[Node: cond/Switch_1/_15 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device_incarnation=1, tensor_name="edge_18_cond/Switch_1", tensor_type=DT_INT64, _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
原因是钩子会在第一个 session.run([iter_train_handle, iter_val_handle]) 时尝试评估图形,这显然在 feed_dict 中不包含句柄。
解决方法是覆盖导致问题的钩子,并将 before_run 和 after_run 中的代码更改为仅对包含 feed_dict 中的句柄的 session.run 调用进行评估(您可以通过 run_context 访问当前 session.run 调用的 feed_dict before_run 和 after_run 的参数)
或者您可以使用最新的 Tensorflow 大师(post-1.4),它向 MonitoredSession 添加了一个 run_step_fn 函数,它允许您指定以下 step_fn 这将避免错误(以评估 if 语句 TrainingIteration 次数为代价... )
def step_fn(step_context):
if handle_train is None:
handle_train, handle_val = sess.run([iter_train_handle, iter_val_handle])
return step_context.run_with_hooks(fetches=..., feed_dict=...)