即使场景是静态的,我得到的 HOUGH 线(红色和白色)从一帧视频到下一帧都不同。
帧与帧之间的 Canny 结果也有很多变化。对于我的测试用例,这个问题在这里并不算太糟糕,但对于真实的街景,Canny 检测到的边缘真的从一帧到另一帧都发疯了。
可以看出,许多行也只是被遗漏了。
我意识到噪声因帧而异,但转换为灰度和随后的模糊使输入图像非常接近(至少在我看来)。
发生了什么事,有什么办法可以解决这个问题?
# Python 2/3 compatibility
import sys
PY3 = sys.version_info[0] == 3
if PY3:
xrange = range
import numpy as np
import cv2
import math
from time import sleep
cap = cv2.VideoCapture(0)
if __name__ == '__main__':
SLOPE = 2.0
while(True):
sleep(0.2)
ret, src = cap.read()
gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
gray_blur = cv2.medianBlur(gray, 5)
gray_blur_canny = cv2.Canny(gray_blur, 25, 150)
cv2.imshow("src", src)
cv2.imshow("gray_blur", gray_blur)
cv2.imshow("gray_blur_canny", gray_blur_canny)
cimg = src.copy() # numpy function
lines = cv2.HoughLinesP(
gray_blur_canny,
1,
math.pi/180.0,
40,
np.array([]),
50,
10)
if lines is not None:
a,b,c = lines.shape
for i in range(a):
numer = lines[i][0][3] - lines[i][0][1] + 0.001;
denom = lines[i][0][2] - lines[i][0][0];
if (denom == 0):
denom = 0.001;
slope = abs(numer/denom);
print slope
if (slope > SLOPE):
cv2.line(
cimg,
(lines[i][0][0], lines[i][0][1]),
(lines[i][0][2], lines[i][0][3]),
(0, 0, 255),
3,
cv2.LINE_AA)
if (slope < (1.0/SLOPE)):
cv2.line(
cimg,
(lines[i][0][0], lines[i][0][1]),
(lines[i][0][2], lines[i][0][3]),
(200, 200, 200),
3,
cv2.LINE_AA)
cv2.imshow("hough lines", cimg)
ch = cv2.waitKey(1)
if ch == 27:
break
cv2.destroyAllWindows()