我真的是张量流和所有这个领域的初学者,但我在 CS231n 课上看过 Andrej Karpathy 的所有讲座,所以我理解了代码。
# Implementing an RNN in TensorFlow
# ----------------------------------
#
# We implement an RNN in TensorFlow to predict spam/ham from texts
#
# https://github.com/nfmcclure/tensorflow_cookbook/blob/master/09_Recurrent_Neural_Networks/02_Implementing_RNN_for_Spam_Prediction/02_implementing_rnn.py
import os
import re
import io
import glob
import requests
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from zipfile import ZipFile
from tensorflow.python.framework import ops
ops.reset_default_graph()
# Start a graph
sess = tf.Session()
# Set RNN parameters
epochs = 20
batch_size = 250
max_sequence_length = 25
rnn_size = 10
embedding_size = 50
min_word_frequency = 10
learning_rate = 0.0005
dropout_keep_prob = tf.placeholder(tf.float32)
# Download or open data
data_dir = 'temp'
data_file = 'text_data.txt'
if not os.path.exists(data_dir):
os.makedirs(data_dir)
if not os.path.isfile(os.path.join(data_dir, data_file)):
zip_url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip'
r = requests.get(zip_url)
z = ZipFile(io.BytesIO(r.content))
file = z.read('SMSSpamCollection')
# Format Data
text_data = file.decode()
text_data = text_data.encode('ascii', errors='ignore')
text_data = text_data.decode().split('\n')
# Save data to text file
with open(os.path.join(data_dir, data_file), 'w') as file_conn:
for text in text_data:
file_conn.write("{}\n".format(text))
else:
# Open data from text file
text_data = []
with open(os.path.join(data_dir, data_file), 'r') as file_conn:
for row in file_conn:
text_data.append(row)
text_data = text_data[:-1]
text_data = [x.split('\t') for x in text_data if len(x) >= 1]
text_data = [x for x in text_data if len(x) > 1]
print([list(x) for x in zip(*text_data)])
[text_data_target, text_data_train] = [list(x) for x in zip(*text_data)]
# Create a text cleaning function
def clean_text(text_string):
text_string = re.sub(r'([^\s\w]|_|[0-9])+', '', text_string)
text_string = " ".join(text_string.split())
text_string = text_string.lower()
return (text_string)
# Clean texts
text_data_train = [clean_text(x) for x in text_data_train]
# Change texts into numeric vectors
vocab_processor = tf.contrib.learn.preprocessing.VocabularyProcessor(max_sequence_length,
min_frequency=min_word_frequency)
text_processed = np.array(list(vocab_processor.fit_transform(text_data_train)))
# Shuffle and split data
text_processed = np.array(text_processed)
text_data_target = np.array([1 if x == 'ham' else 0 for x in text_data_target])
shuffled_ix = np.random.permutation(np.arange(len(text_data_target)))
x_shuffled = text_processed[shuffled_ix]
y_shuffled = text_data_target[shuffled_ix]
# Split train/test set
ix_cutoff = int(len(y_shuffled) * 0.80)
x_train, x_test = x_shuffled[:ix_cutoff], x_shuffled[ix_cutoff:]
y_train, y_test = y_shuffled[:ix_cutoff], y_shuffled[ix_cutoff:]
vocab_size = len(vocab_processor.vocabulary_)
print("Vocabulary Size: {:d}".format(vocab_size))
print("80-20 Train Test split: {:d} -- {:d}".format(len(y_train), len(y_test)))
# Create placeholders
x_data = tf.placeholder(tf.int32, [None, max_sequence_length])
y_output = tf.placeholder(tf.int32, [None])
# Create embedding
embedding_mat = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0))
embedding_output = tf.nn.embedding_lookup(embedding_mat, x_data)
# embedding_output_expanded = tf.expand_dims(embedding_output, -1)
# Define the RNN cell
# tensorflow change >= 1.0, rnn is put into tensorflow.contrib directory. Prior version not test.
if tf.__version__[0] >= '1':
cell = tf.contrib.rnn.BasicRNNCell(num_units=rnn_size)
else:
cell = tf.nn.rnn_cell.BasicRNNCell(num_units=rnn_size)
output, state = tf.nn.dynamic_rnn(cell, embedding_output, dtype=tf.float32)
output = tf.nn.dropout(output, dropout_keep_prob)
# Get output of RNN sequence
output = tf.transpose(output, [1, 0, 2])
last = tf.gather(output, int(output.get_shape()[0]) - 1)
weight = tf.Variable(tf.truncated_normal([rnn_size, 2], stddev=0.1))
bias = tf.Variable(tf.constant(0.1, shape=[2]))
logits_out = tf.matmul(last, weight) + bias
# Loss function
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits_out,
labels=y_output) # logits=float32, labels=int32
loss = tf.reduce_mean(losses)
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits_out, 1), tf.cast(y_output, tf.int64)), tf.float32))
optimizer = tf.train.RMSPropOptimizer(learning_rate)
train_step = optimizer.minimize(loss)
init = tf.global_variables_initializer()
sess.run(init)
train_loss = []
test_loss = []
train_accuracy = []
test_accuracy = []
# Start training
for epoch in range(epochs):
# Shuffle training data
shuffled_ix = np.random.permutation(np.arange(len(x_train)))
x_train = x_train[shuffled_ix]
y_train = y_train[shuffled_ix]
num_batches = int(len(x_train) / batch_size) + 1
# TO DO CALCULATE GENERATIONS ExACTLY
for i in range(num_batches):
# Select train data
min_ix = i * batch_size
max_ix = np.min([len(x_train), ((i + 1) * batch_size)])
x_train_batch = x_train[min_ix:max_ix]
y_train_batch = y_train[min_ix:max_ix]
# Run train step
train_dict = {x_data: x_train_batch, y_output: y_train_batch, dropout_keep_prob: 0.5}
sess.run(train_step, feed_dict=train_dict)
# Run loss and accuracy for training
temp_train_loss, temp_train_acc = sess.run([loss, accuracy], feed_dict=train_dict)
train_loss.append(temp_train_loss)
train_accuracy.append(temp_train_acc)
# Run Eval Step
test_dict = {x_data: x_test, y_output: y_test, dropout_keep_prob: 1.0}
temp_test_loss, temp_test_acc = sess.run([loss, accuracy], feed_dict=test_dict)
test_loss.append(temp_test_loss)
test_accuracy.append(temp_test_acc)
print('Epoch: {}, Test Loss: {:.2}, Test Acc: {:.2}'.format(epoch + 1, temp_test_loss, temp_test_acc))
# Plot loss over time
epoch_seq = np.arange(1, epochs + 1)
plt.plot(epoch_seq, train_loss, 'k--', label='Train Set')
plt.plot(epoch_seq, test_loss, 'r-', label='Test Set')
plt.title('Softmax Loss')
plt.xlabel('Epochs')
plt.ylabel('Softmax Loss')
plt.legend(loc='upper left')
plt.show()
# Plot accuracy over time
plt.plot(epoch_seq, train_accuracy, 'k--', label='Train Set')
plt.plot(epoch_seq, test_accuracy, 'r-', label='Test Set')
plt.title('Test Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend(loc='upper left')
plt.show()
def findFiles(path): return glob.glob(path)
pred_array = "words"
pred_num = np.array(list(vocab_processor.fit_transform(pred_array)))
print(pred_num)
pred_output = tf.placeholder(tf.float32,[1,len(pred_array),max_sequence_length])
feed_dict = {pred_output: [pred_num]}
classification = sess.run(losses, feed_dict)
print(classification)
这是一个 RNN 垃圾邮件分类器,效果很好(接受我在最后尝试创建预测的部分)。
我只是想了解如何为此创建一个预测函数,看起来像这样:
def predict(text): # text is a string (my mail)
# Doing prediction stuff
return (top result) # ham or spam
最后几行是我最后一次尝试给我以下错误:
tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder' with dtype float
[[Node: Placeholder = Placeholder[dtype=DT_FLOAT, shape=<unknown>, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
此外,我尝试使用使用TensorFlow 模型进行预测来做一些事情,我还阅读了https://www.tensorflow.org/serving/serving_basic并且我尝试过的每件事都失败了......
由于我只是一个初学者,因此欢迎解释,但我不确定我是否知道如何编码,所以你也可以发布代码答案。
(Python 3.6 顺便说一句)
谢谢!