给定一个 3d 数组和一个 2d 数组,
a = np.arange(10*4*3).reshape((10,4,3))
b = np.arange(30).reshape((10,3))
如何在每个轴的最后一个轴上运行元素乘法,导致形状在c
哪里?IEc
.shape
a
c[0] = a[0] * b[0]
c[1] = a[1] * b[1]
# ...
c[i] = a[i] * b[i]
给定一个 3d 数组和一个 2d 数组,
a = np.arange(10*4*3).reshape((10,4,3))
b = np.arange(30).reshape((10,3))
如何在每个轴的最后一个轴上运行元素乘法,导致形状在c
哪里?IEc
.shape
a
c[0] = a[0] * b[0]
c[1] = a[1] * b[1]
# ...
c[i] = a[i] * b[i]
在不涉及任何减和的情况下,一个简单的在扩展到withbroadcasting
之后会非常有效-b
3D
np.newaxis/None
a*b[:,None,:] # or simply a*b[:,None]
运行时测试 -
In [531]: a = np.arange(10*4*3).reshape((10,4,3))
...: b = np.arange(30).reshape((10,3))
...:
In [532]: %timeit np.einsum('ijk,ik->ijk', a, b) #@Brad Solomon's soln
...: %timeit a*b[:,None]
...:
100000 loops, best of 3: 1.79 µs per loop
1000000 loops, best of 3: 1.66 µs per loop
In [525]: a = np.random.rand(100,100,100)
In [526]: b = np.random.rand(100,100)
In [527]: %timeit np.einsum('ijk,ik->ijk', a, b)
...: %timeit a*b[:,None]
...:
1000 loops, best of 3: 1.53 ms per loop
1000 loops, best of 3: 1.08 ms per loop
In [528]: a = np.random.rand(400,400,400)
In [529]: b = np.random.rand(400,400)
In [530]: %timeit np.einsum('ijk,ik->ijk', a, b)
...: %timeit a*b[:,None]
...:
10 loops, best of 3: 128 ms per loop
10 loops, best of 3: 94.8 ms per loop
使用np.einsum
:
c = np.einsum('ijk,ik->ijk', a, b)
快速检查:
print(np.allclose(c[0], a[0] * b[0]))
print(np.allclose(c[1], a[1] * b[1]))
print(np.allclose(c[-1], a[-1] * b[-1]))
# True
# True
# True