我试图了解如何最好地利用 numpy 数组的 C 排序来编写高性能代码。我的期望是遍历行的操作应该比遍历列的操作更快。事实上,这对于我尝试的第一个示例是正确的:
X = np.ones((10000,10000),dtype='int64')
print(X.dtype)
print(X.flags)
%timeit np.sum(X,axis=0)
%timeit np.sum(X,axis=1)
这会产生输出:
int64
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
10 loops, best of 3: 79.6 ms per loop
10 loops, best of 3: 61.1 ms per loop
这是我所期望的,因为沿行求和应该比沿列求和更快。
这是我非常困惑的地方。如果我将 dtype 更改为 float64,那么列操作的速度几乎是行操作的两倍:
X = np.ones((10000,10000),dtype='float')
print(X.dtype)
print(X.flags)
%timeit np.sum(X,axis=0)
%timeit np.sum(X,axis=1)
产生输出:
float64
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
10 loops, best of 3: 67.7 ms per loop
10 loops, best of 3: 123 ms per loop
有人可以澄清为什么会这样吗?
编辑:评论中建议我使用较小的矩阵(1000,1000)再次尝试。当我运行时:
import time
import numpy as np
X = np.ones((1000,1000),dtype='float')
print(X.dtype)
print(X.flags)
%timeit np.sum(X,axis=0)
%timeit np.sum(X,axis=1)
X = np.ones((1000,1000),dtype='int64')
print(X.dtype)
print(X.flags)
%timeit np.sum(X,axis=0)
%timeit np.sum(X,axis=1)
我得到输出:
float64
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
1000 loops, best of 3: 598 µs per loop
1000 loops, best of 3: 1.06 ms per loop
int64
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
1000 loops, best of 3: 788 µs per loop
1000 loops, best of 3: 632 µs per loop
所以效果是持久的。