嵌入层从输入单词中创建嵌入向量(我自己仍然不懂数学),就像 word2vec 或预先计算的手套一样。
在我开始你的代码之前,让我们做一个简短的例子。
texts = ['This is a text','This is not a text']
首先,我们将这些句子转换为整数向量,其中每个单词都是分配给字典中单词的数字,向量的顺序创建单词的序列。
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical
max_review_length = 6 #maximum length of the sentence
embedding_vecor_length = 3
top_words = 10
#num_words is tne number of unique words in the sequence, if there's more top count words are taken
tokenizer = Tokenizer(top_words)
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)
word_index = tokenizer.word_index
input_dim = len(word_index) + 1
print('Found %s unique tokens.' % len(word_index))
#max_review_length is the maximum length of the input text so that we can create vector [... 0,0,1,3,50] where 1,3,50 are individual words
data = pad_sequences(sequences, max_review_length)
print('Shape of data tensor:', data.shape)
print(data)
[Out:]
'This is a text' --> [0 0 1 2 3 4]
'This is not a text' --> [0 1 2 5 3 4]
现在您可以将这些输入到嵌入层
from keras.models import Sequential
from keras.layers import Embedding
model = Sequential()
model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length,mask_zero=True))
model.compile(optimizer='adam', loss='categorical_crossentropy')
output_array = model.predict(data)
output_array 包含大小为 (2, 6, 3) 的数组:在我的情况下,2 个输入评论或句子,6 是每个评论中的最大单词数 (max_review_length),3 是 embedding_vecor_length。例如
array([[[-0.01494285, -0.007915 , 0.01764857],
[-0.01494285, -0.007915 , 0.01764857],
[-0.03019481, -0.02910612, 0.03518577],
[-0.0046863 , 0.04763055, -0.02629668],
[ 0.02297204, 0.02146662, 0.03114786],
[ 0.01634104, 0.02296363, -0.02348827]],
[[-0.01494285, -0.007915 , 0.01764857],
[-0.03019481, -0.02910612, 0.03518577],
[-0.0046863 , 0.04763055, -0.02629668],
[-0.01736645, -0.03719328, 0.02757809],
[ 0.02297204, 0.02146662, 0.03114786],
[ 0.01634104, 0.02296363, -0.02348827]]], dtype=float32)
在您的情况下,您有一个 5000 个单词的列表,它可以创建最多 500 个单词的评论(更多将被修剪)并将这 500 个单词中的每一个转换为大小为 32 的向量。
您可以通过运行以下命令获得词索引和嵌入向量之间的映射:
model.layers[0].get_weights()
在下面的例子中,top_words 是 10,所以我们有 10 个单词的映射,你可以看到 0、1、2、3、4 和 5 的映射等于上面的 output_array。
[array([[-0.01494285, -0.007915 , 0.01764857],
[-0.03019481, -0.02910612, 0.03518577],
[-0.0046863 , 0.04763055, -0.02629668],
[ 0.02297204, 0.02146662, 0.03114786],
[ 0.01634104, 0.02296363, -0.02348827],
[-0.01736645, -0.03719328, 0.02757809],
[ 0.0100757 , -0.03956784, 0.03794377],
[-0.02672029, -0.00879055, -0.039394 ],
[-0.00949502, -0.02805768, -0.04179233],
[ 0.0180716 , 0.03622523, 0.02232374]], dtype=float32)]
如https://stats.stackexchange.com/questions/270546/how-does-keras-embedding-layer-work中所述,这些向量是随机启动的,并由网络优化器进行优化,就像网络的任何其他参数一样。