0

我希望这个列表近似为 6 个值,因为您会看到这些值以一些方差分布。我在 matplotlib 中绘制,我明白。现在我有 6 个具有多个值的兴趣点,我如何才能将其近似为 6 个值

[(61, 148), (61, 149), (61, 150), (62, 147), (62, 148), (62, 149), (62, 150), (63, 147), (63, 148), (63, 149), (63, 150), (64, 147), (64, 148), (64, 149), (64, 150), (65, 147), (65, 148), (65, 149), (65, 150), (149, 436), (149, 437), (149, 438), (150, 366), (150, 367), (150, 368), (150, 436), (150, 437), (150, 438), (150, 439), (151, 366), (151, 367), (151, 368), (151, 436), (151, 437), (151, 438), (151, 439), (152, 366), (152, 367), (152, 368), (152, 436), (152, 437), (152, 438), (152, 439), (175, 147), (175, 148), (175, 149), (175, 150), (175, 264), (175, 265), (175, 266), (175, 267), (176, 147), (176, 148), (176, 149), (176, 150), (176, 264), (176, 265), (176, 266), (176, 267), (177, 147), (177, 148), (177, 149), (177, 150), (177, 264), (177, 265), (177, 266), (177, 267), (178, 147), (178, 148), (178, 149), (178, 264), (178, 265), (178, 266), (230, 366), (230, 367), (230, 368), (230, 369), (231, 366), (231, 367), (231, 368), (231, 369), (232, 366), (232, 367), (232, 368), (232, 369), (233, 366), (233, 367), (233, 368)]
4

1 回答 1

1

使用层次聚类解决了这个问题。设置默认半径运行相同的数据点。降到了6分。

#mean shift clustering.
#this lets the program decide number of groups involved in the given dataset
import numpy as np
import matplotlib.pyplot as plt
import random as r

#setting all the points as centroids
centroids = {}


def auto_cluster(radius,data):
    global centroids

    for i in range(len(data)):
        centroids[i] = data[i]

    while True:
        new_centroids=[]
        #checking all the points whether it is in radius and assign to to that centroid
        for j in centroids:
            in_radius=[]
            centroid=centroids[j]
            for point in data:
                if np.linalg.norm(point-centroid)<radius:
                    in_radius.append(point)
            #finding mean
            new_centroid=np.average(in_radius,axis=0)
            new_centroids.append(tuple(new_centroid))
        #collect all the final centroids for each grp
        uniques=sorted(list(set(new_centroids)))
        prev_centroids=dict(centroids)
        centroids={}
        #fil with new centroids
        for i in range(len(uniques)):
            centroids[i]=np.array(uniques[i])
        opt=True
        #chech whether the centroid is optimized
        for i in centroids:
            if not np.array_equal(centroids[i],prev_centroids[i]):
                opt=False
            if not opt:
                break
        if opt:break
    return centroids

if __name__=="__main__":
    data = [[61, 148], [61, 149], [61, 150], [62, 147], [62, 148], [62, 149], [62, 150], [63, 147], [63, 148],
            [63, 149], [63, 150], [64, 147], [64, 148], [64, 149], [64, 150], [65, 147], [65, 148], [65, 149],
            [65, 150], [149, 436], [149, 437], [149, 438], [150, 366], [150, 367], [150, 368], [150, 436], [150, 437],
            [150, 438], [150, 439], [151, 366], [151, 367], [151, 368], [151, 436], [151, 437], [151, 438], [151, 439],
            [152, 366], [152, 367], [152, 368], [152, 436], [152, 437], [152, 438], [152, 439], [175, 147], [175, 148],
            [175, 149], [175, 150], [175, 264], [175, 265], [175, 266], [175, 267], [176, 147], [176, 148], [176, 149],
            [176, 150], [176, 264], [176, 265], [176, 266], [176, 267], [177, 147], [177, 148], [177, 149], [177, 150],
            [177, 264], [177, 265], [177, 266], [177, 267], [178, 147], [178, 148], [178, 149], [178, 264], [178, 265],
            [178, 266], [230, 366], [230, 367], [230, 368], [230, 369], [231, 366], [231, 367], [231, 368], [231, 369],
            [232, 366], [232, 367], [232, 368], [232, 369], [233, 366], [233, 367], [233, 368]]
    data = np.array(data)
    centroids = {}

    cent = auto_cluster(radius=5,data=data)
    print centroids
    print(len(cent))  # no. of centroids
    # plots
    [plt.scatter(x[0], x[1], s=50, c='g') for x in data]
    for c in cent:
        plt.scatter(cent[c][0], cent[c][1], s=200, marker='*')
    plt.show()
于 2017-08-05T05:54:31.407 回答