我已经将 pyparsing 用于有限词汇命令解析,但这里有一个基于 pyparsing 的小框架,用于解决您发布的示例:
from pyparsing import *
transVerb, transVerbPlural, transVerbPast, transVerbProg = (Forward() for i in range(4))
intransVerb, intransVerbPlural, intransVerbPast, intransVerbProg = (Forward() for i in range(4))
singNoun,pluralNoun,properNoun = (Forward() for i in range(3))
singArticle,pluralArticle = (Forward() for i in range(2))
verbProg = transVerbProg | intransVerbProg
verbPlural = transVerbPlural | intransVerbPlural
for expr in (transVerb, transVerbPlural, transVerbPast, transVerbProg,
intransVerb, intransVerbPlural, intransVerbPast, intransVerbProg,
singNoun, pluralNoun, properNoun, singArticle, pluralArticle):
expr << MatchFirst([])
def appendExpr(e1, s):
c1 = s[0]
e2 = Regex(r"[%s%s]%s\b" % (c1.upper(), c1.lower(), s[1:]))
e1.expr.exprs.append(e2)
def makeVerb(s, transitive):
v_pl, v_sg, v_past, v_prog = s.split()
if transitive:
appendExpr(transVerb, v_sg)
appendExpr(transVerbPlural, v_pl)
appendExpr(transVerbPast, v_past)
appendExpr(transVerbProg, v_prog)
else:
appendExpr(intransVerb, v_sg)
appendExpr(intransVerbPlural, v_pl)
appendExpr(intransVerbPast, v_past)
appendExpr(intransVerbProg, v_prog)
def makeNoun(s, proper=False):
if proper:
appendExpr(properNoun, s)
else:
n_sg,n_pl = (s.split() + [s+"s"])[:2]
appendExpr(singNoun, n_sg)
appendExpr(pluralNoun, n_pl)
def makeArticle(s, plural=False):
for ss in s.split():
if not plural:
appendExpr(singArticle, ss)
else:
appendExpr(pluralArticle, ss)
makeVerb("disappear disappears disappeared disappearing", transitive=False)
makeVerb("walk walks walked walking", transitive=False)
makeVerb("see sees saw seeing", transitive=True)
makeVerb("like likes liked liking", transitive=True)
makeNoun("dog")
makeNoun("girl")
makeNoun("car")
makeNoun("child children")
makeNoun("Kim", proper=True)
makeNoun("Jody", proper=True)
makeArticle("a the")
makeArticle("this every")
makeArticle("the these all some several", plural=True)
transObject = (singArticle + singNoun | properNoun | Optional(pluralArticle) + pluralNoun | verbProg | "to" + verbPlural)
sgSentence = (singArticle + singNoun | properNoun) + (intransVerb | intransVerbPast | (transVerb | transVerbPast) + transObject)
plSentence = (Optional(pluralArticle) + pluralNoun) + (intransVerbPlural | intransVerbPast | (transVerbPlural |transVerbPast) + transObject)
sentence = sgSentence | plSentence
def test(s):
print s
try:
print sentence.parseString(s).asList()
except ParseException, pe:
print pe
test("Kim likes cars")
test("The girl saw the dog")
test("The dog saw Jody")
test("Kim likes walking")
test("Every girl likes dogs")
test("All dogs like children")
test("Jody likes to walk")
test("Dogs like walking")
test("All dogs like walking")
test("Every child likes Jody")
印刷:
Kim likes cars
['Kim', 'likes', 'cars']
The girl saw the dog
['The', 'girl', 'saw', 'the', 'dog']
The dog saw Jody
['The', 'dog', 'saw', 'Jody']
Kim likes walking
['Kim', 'likes', 'walking']
Every girl likes dogs
['Every', 'girl', 'likes', 'dogs']
All dogs like children
['All', 'dogs', 'like', 'children']
Jody likes to walk
['Jody', 'likes', 'to', 'walk']
Dogs like walking
['Dogs', 'like', 'walking']
All dogs like walking
['All', 'dogs', 'like', 'walking']
Every child likes Jody
['Every', 'child', 'likes', 'Jody']
随着您扩大词汇量,这可能会变慢。一百万个条目?我认为一个合理的功能词汇量在 5-6 千词左右。而且您可以处理的句子结构非常有限 - 自然语言是 NLTK 的用途。