来自https://github.com/RaRe-Technologies/gensim/blob/master/docs/notebooks/doc2vec-wikipedia.ipynb的 Doc2Vec 维基百科教程
for num in range(0, 20):
print('min_count: {}, size of vocab: '.format(num),
pre.scale_vocab(min_count=num, dry_run=True)['memory']['vocab']/700)
输出是:
min_count: 0, size of vocab: 8545782.0
min_count: 1, size of vocab: 8545782.0
min_count: 2, size of vocab: 4227783.0
min_count: 3, size of vocab: 3008772.0
min_count: 4, size of vocab: 2439367.0
min_count: 5, size of vocab: 2090709.0
min_count: 6, size of vocab: 1856609.0
min_count: 7, size of vocab: 1681670.0
min_count: 8, size of vocab: 1546914.0
min_count: 9, size of vocab: 1437367.0
min_count: 10, size of vocab: 1346177.0
min_count: 11, size of vocab: 1267916.0
min_count: 12, size of vocab: 1201186.0
min_count: 13, size of vocab: 1142377.0
min_count: 14, size of vocab: 1090673.0
min_count: 15, size of vocab: 1043973.0
min_count: 16, size of vocab: 1002395.0
min_count: 17, size of vocab: 964684.0
min_count: 18, size of vocab: 930382.0
min_count: 19, size of vocab: 898725.0
在原始论文中,他们将词汇量设置为 915,715。如果我们设置 min_count = 19,词汇量似乎相似。(词汇量 = 898,725)
700
似乎相当武断,我在docs中没有看到任何提及。