2

我一直在这个网站上阅读,但无法找到确切的答案。如果它已经存在,我为重新发布而道歉。

我正在处理非常大的数据集(在具有 32 GB RAM 的计算机上,6 亿行,64 列)。我真的只需要这些数据的小得多的子集,但是除了简单地用 fread 导入一个数据集并选择我需要的 5 列之外,我还在努力执行任何功能。之后,我尝试用我需要的特定条件覆盖我的数据集,但我达到了我的 RAM 上限并收到消息“错误:无法分配 4.5 GB 的向量大小。我将 ff 和 bigmemory 包作为替代方案,但似乎就像你在导入这些包之前不能子集一样?除了升级计算机上的 RAM 之外,有没有解决这个问题的方法?

我正在尝试执行的任务:

>SampleTable<-fread("my.csv", header = T, sep = ",", select=c("column1", "column2", "column7", "column12", "column15"))

>SampleTable2<-SampleTable[SampleTable[,column1=="6" & column7=="1"]]

在这一点上,我达到了我的记忆上限。尝试使用另一个包但导入所有 64 列的 6 亿行会更好吗?我也不想仅仅为了执行一次导入而花费数小时。

4

2 回答 2

2

如果您的数据集可以轻松解析(例如,没有嵌入的逗号):

library(data.table)

> fread('cat tmp.csv')
   col1 col2 col3 col4 col5 col6 col7 col8 col9 col10 col11 col12 col13 col14 col15 col16 col17
1:    6    1    1    1    1    1    1    1    1     1     1     1     1     1     1     1     1
2:    2    2    2    2    2    2    2    2    2     2     2     2     2     2     2     2     2
> fread("cat tmp.csv | awk -F ',' 'NR == 1 || ($1 == 6 && $7 == 1)'")
   col1 col2 col3 col4 col5 col6 col7 col8 col9 col10 col11 col12 col13 col14 col15 col16 col17
1:    6    1    1    1    1    1    1    1    1     1     1     1     1     1     1     1     1
> fread("cat tmp.csv | awk -F ',' 'NR == 1 || ($1 == 6 && $7 == 1) {print $1, $2, $7, $12, $15}'")
   col1 col2 col7 col12 col15
1:    6    1    1     1     1
> 
于 2017-07-28T21:22:47.403 回答
2

您可以做的是分块读取 CSV 文件:

# Define only the subset of columns
csv <- "my.csv"
colnames <- names(read.csv(csv, header = TRUE, nrows = 1))
colclasses <- rep(list(NULL), length(colnames))
ind <- c(1, 2, 7, 12, 15)
colclasses[ind] <- "double"

# Read header and first line
library(dplyr)
l_df <- list()
con <- file(csv, "rt")
df <- read.csv(con, header = TRUE, nrows = 1, colClasses = colclasses) %>%
  filter(V1 == 6, V7 == 1)
names(df) <- paste0("V", ind)
l_df[[i <- 1]] <- df

# Read all other lines and combine
repeat {
  i <- i + 1
  df <- read.csv(con, header = FALSE, nrows = 9973, colClasses = colclasses)
  l_df[[i]] <- filter(df, V1 == 6, V7 == 1)
  if (nrow(df) < 9973) break
}
df <- do.call("rbind", l_df)

9973是一个任意素数,它几乎没有机会成为 的除数nlines - 1

于 2017-07-31T14:13:10.250 回答