目前,我有以下情况。
Excel Data Frame = SQL Data Frame =
________ ________ _______ ___________ _________
|sector| |sector| | hour| | value_cs| value_ps|
-------- -------- ------- ----------- ---------
AXYZ AXYZ 0 78.90 87.10
BYYT RACH 0 87.12 13.90
IOPL IOPL 0 93.10 13.87
XFTR AXYZ 1 27.90 12.87
MANU IOPL 1 23.09 90.09
FRES 2 34.09 12.34
YYYT 2 12.43 32.98
REWT 3 98.09 99.99
我有一个 Excel 文件和一组 SQL 结果,我想将Excel 文件中Sector 列的每个值与 SQL 结果中 Sector 列中的所有值进行比较,因此,如果值之间存在匹配然后将这两列中的列hour、value_cs和value_ps从 SQL 结果添加到新的数据框中。注意: SQL 结果的数据与 Excel 文件的数据大小不同。
期望的结果
New data frame 1 for value cs
________ ____ ___ ___ ___ ___ ___ ___ ____
|sector| |0| |1| |2| |3| |4| |5| |6| .... |23|
-------- ---- --- ---- --- --- --- ---- ----
AXYZ 78.90 27.90 78.89 54.90 98.23 85.0 45.90 68.23
BYYT 18.94 67.10 65.69 76.32 76.56 56.03 56.23 87.65
IOPL 93.10 23.09 34.29 97.34 34.34 14.54 34.91 23.21
... ...
New data frame 2 for value ps
________ ____ ___ ___ ___ ___ ___ ___ ____
|sector| |0| |1| |2| |3| |4| |5| |6| .... |23|
-------- ---- --- ---- --- --- --- ---- ----
AXYZ 87.10 12.87 49.89 84.90 76.23 15.01 12.90 68.23
BYYT 28.43 27.11 54.69 57.12 19.56 45.12 45.23 47.15
IOPL 13.87 90.09 24.19 47.34 18.34 21.54 67.11 13.61
... ...
我遵循的方法是将 SQL 结果转换为数据框以及 Excel 文件中的数据,但我不知道如何在没有 for 循环的情况下执行比较,而只使用 Pandas(for 循环也需要很多时间来执行计算)。
import pandas as pd
import pypyodbc
from datetime import date
def get_and_compare():
start_date = date.today()
retrieve_values = "[DEV].[CS].[QA_Export] @start_date='{start_date:%Y-%m-%d}'".format(start_date=start_date)
# Connect to the database
db_connection = pypyodbc.connect(driver="{SQL Server}", server="xxx.xxx.xxx.xxx", uid="xxx",
pwd="xxx", Trusted_Connection="No")
# Get the sql result into dataframe
data_frame_sql = pd.read_sql(retrieve_values,db_connection)
#declare new data frames
new_df_one = pd.DataFrame(columns=['sector', 'value cs', 'hour 0', 'hour 1', 'hour 2', 'hour 3', 'hour 4',
'hour 5', 'hour 6', 'hour 7', 'hour 8', 'hour 9', 'hour 10', 'hour 11',
'hour 12', 'hour 13', 'hour 14', 'hour 15', 'hour 16', 'hour 17', 'hour 18',
'hour 19', 'hour 20', 'hour 21', 'hour 22', 'hour 23'])
new_df_two = pd.DataFrame(columns=['sector', 'value ps', 'hour 0', 'hour 1', 'hour 2', 'hour 3', 'hour 4',
'hour 5', 'hour 6', 'hour 7', 'hour 8', 'hour 9', 'hour 10', 'hour 11',
'hour 12', 'hour 13', 'hour 14', 'hour 15', 'hour 16', 'hour 17', 'hour 18',
'hour 19', 'hour 20', 'hour 21', 'hour 22', 'hour 23'])
# Read the Excel file
current_wb = pd.ExcelFile \
("C:\\U\\dev\\testing\\Main values to compare.xlsx")
# Get the specific sheet to compare
working_values = current_wb.parse("Main values")
#Get the column from Excel
sector_from_excel = working_values['sector']
#Comparison to perform
#.... unknown part
所有的建议、评论将不胜感激,以帮助我完成这部分代码。