我遇到了同样的问题。您必须对 BoundingBox 值执行一些计算。请注意响应的OrientationCorrection字段中返回的估计方向。这是这里的关键值。您必须从那些令人困惑的值中找到Top和Left 。这是提示:
如果方向校正 = ROTATE_0
Left = image.width*BoundingBox.Left
Top = image.height*BoundingBox.To
如果方向校正 = ROTATE_90
Left = image.height * (1 - (BoundingBox.Top + .BoundingBox.Height))
Top = image.width * BoundingBox.Left
如果方向校正 = ROTATE_180
Left = image.width - (image.width*(BoundingBox.Left + BoundingBox.Width))
Top = image.height * (1 - (BoundingBox.Top + BoundingBox.Height))
如果方向校正 = ROTATE_270
Left = image.height * BoundingBox.top
Top = image.width * (1 - BoundingBox.Left - BoundingBox.Width)
这是我使用过的python示例代码。
import boto3
import io
from PIL import Image
# Calculate positions from from estimated rotation
def ShowBoundingBoxPositions(imageHeight, imageWidth, box, rotation):
left = 0
top = 0
if rotation == 'ROTATE_0':
left = imageWidth * box['Left']
top = imageHeight * box['Top']
if rotation == 'ROTATE_90':
left = imageHeight * (1 - (box['Top'] + box['Height']))
top = imageWidth * box['Left']
if rotation == 'ROTATE_180':
left = imageWidth - (imageWidth * (box['Left'] + box['Width']))
top = imageHeight * (1 - (box['Top'] + box['Height']))
if rotation == 'ROTATE_270':
left = imageHeight * box['Top']
top = imageWidth * (1- box['Left'] - box['Width'] )
print('Left: ' + '{0:.0f}'.format(left))
print('Top: ' + '{0:.0f}'.format(top))
print('Face Width: ' + "{0:.0f}".format(imageWidth * box['Width']))
print('Face Height: ' + "{0:.0f}".format(imageHeight * box['Height']))
if __name__ == "__main__":
photo='input.png'
client=boto3.client('rekognition')
#Get image width and height
image = Image.open(open(photo,'rb'))
width, height = image.size
print ('Image information: ')
print (photo)
print ('Image Height: ' + str(height))
print('Image Width: ' + str(width))
# call detect faces and show face age and placement
# if found, preserve exif info
stream = io.BytesIO()
if 'exif' in image.info:
exif=image.info['exif']
image.save(stream,format=image.format, exif=exif)
else:
image.save(stream, format=image.format)
image_binary = stream.getvalue()
response = client.detect_faces(Image={'Bytes': image_binary}, Attributes=['ALL'])
print('Detected faces for ' + photo)
for faceDetail in response['FaceDetails']:
print ('Face:')
if 'OrientationCorrection' in response:
print('Orientation: ' + response['OrientationCorrection'])
ShowBoundingBoxPositions(height, width, faceDetail['BoundingBox'], response['OrientationCorrection'])
else:
print ('No estimated orientation. Check Exif data')
print('The detected face is estimated to be between ' + str(faceDetail['AgeRange']['Low'])
+ ' and ' + str(faceDetail['AgeRange']['High']) + ' years')
print()
它将返回图像中人脸的Top、Left、Height、Width。如果您使用 python,则可以像这样使用 PIL 轻松裁剪图像。
from PIL import Image
image = Image.open(open("Main_Image", 'rb'))
area = (Left, Top, Left + Width, Top + Height)
face = image.crop(area)
face.show()
它将显示图像中裁剪的面部。
快乐编码