如果我在不平衡二元目标变量的情况下使用欠采样来训练模型,则预测方法会在平衡数据集的假设下计算概率。如何将这些概率转换为不平衡数据的实际概率?转换参数/函数是在 mlr 包还是其他包中实现的?例如:
a <- data.frame(y=factor(sample(0:1, prob = c(0.1,0.9), replace=T, size=100)))
a$x <- as.numeric(a$y)+rnorm(n=100, sd=1)
task <- makeClassifTask(data=a, target="y", positive="0")
learner <- makeLearner("classif.binomial", predict.type="prob")
learner <- makeUndersampleWrapper(learner, usw.rate = 0.1, usw.cl = "1")
model <- train(learner, task, subset = 1:50)
pred <- predict(model, task, subset = 51:100)
head(pred$data)