你可以itertools
在这里使用,在你的情况下我会使用chain
和islice
import itertools
a1 = ['x1','y1','z1']
a2 = ['w2','x2','y2','z2']
a3 = ['p3','r3','t3','n3']
list1 = [a1,a2,a3]
def flatten_and_batch(lst, size):
it = itertools.chain.from_iterable(lst)
while True:
res = list(itertools.islice(it, size))
if not res:
break
else:
yield res
list(flatten_and_batch(list1, 2))
# [['x1', 'y1'], ['z1', 'w2'], ['x2', 'y2'], ['z2', 'p3'], ['r3', 't3'], ['n3']]
list(flatten_and_batch(list1, 3))
# [['x1', 'y1', 'z1'], ['w2', 'x2', 'y2'], ['z2', 'p3', 'r3'], ['t3', 'n3']]
如果您不介意额外的依赖项,您也可以在此处使用iteration_utilities.grouper
(尽管它返回元组而不是列表)1:
from iteration_utilities import flatten, grouper, Iterable
>>> list(grouper(flatten(list1), 2))
[('x1', 'y1'), ('z1', 'w2'), ('x2', 'y2'), ('z2', 'p3'), ('r3', 't3'), ('n3',)]
>>> list(grouper(flatten(list1), 3))
[('x1', 'y1', 'z1'), ('w2', 'x2', 'y2'), ('z2', 'p3', 'r3'), ('t3', 'n3')]
或iteration_utilities.Iterable
:
>>> Iterable(list1).flatten().grouper(3).as_list()
[('x1', 'y1', 'z1'), ('w2', 'x2', 'y2'), ('z2', 'p3', 'r3'), ('t3', 'n3')]
>>> Iterable(list1).flatten().grouper(4).map(list).as_list()
[['x1', 'y1', 'z1', 'w2'], ['x2', 'y2', 'z2', 'p3'], ['r3', 't3', 'n3']]
1免责声明:我是该库的作者。
时间:
from itertools import chain, islice
flatten = chain.from_iterable
from iteration_utilities import flatten, grouper, Iterable
def slicer(seq, n):
it = iter(seq)
return lambda: list(islice(it,n))
def my_gen(seq_seq, batchsize):
for batch in iter(slicer(flatten(seq_seq), batchsize), []):
yield batch
def flatten_and_batch(lst, size):
it = flatten(lst)
while True:
res = list(islice(it, size))
if not res:
break
else:
yield res
def iteration_utilities_approach(seq, size):
return grouper(flatten(seq), size)
def partition(lst, c):
all_elem = list(chain.from_iterable(lst))
for k in range(0, len(all_elem), c):
yield all_elem[k:k+c]
def juanpa(seq, size):
return list(my_gen(seq, size))
def mseifert1(seq, size):
return list(flatten_and_batch(seq, size))
def mseifert2(seq, size):
return list(iteration_utilities_approach(seq, size))
def JoelCornett(seq, size):
return list(partition(seq, size))
# Timing setup
timings = {juanpa: [],
mseifert1: [],
mseifert2: [],
JoelCornett: []}
sizes = [2**i for i in range(1, 18, 2)]
# Timing
for size in sizes:
print(size)
func_input = [['x1','y1','z1']]*size
for func in timings:
print(str(func))
res = %timeit -o func(func_input, 3)
timings[func].append(res)
%matplotlib notebook
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure(1)
ax = plt.subplot(111)
for func in timings:
ax.plot(sizes,
[time.best for time in timings[func]],
label=str(func.__name__))
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel('size')
ax.set_ylabel('time [seconds]')
ax.grid(which='both')
ax.legend()
plt.tight_layout()