首先我将介绍2个新的解决方案
合并的解决方案
df1 <- merge(data.frame(ip=a,a=1), data.frame(ip=b,b=1),all=TRUE) %>%
set_rownames(.,`[`(.,,'ip')) %>% select(-ip) %>% replace(.,is.na(.),0)
# a b
# 192.168.0.1 1 0
# 192.168.0.10 1 1
# 192.168.0.2 1 0
# 192.168.0.3 1 0
# 192.168.0.4 1 0
# 192.168.0.5 1 1
# 192.168.0.6 1 1
# 192.168.0.7 1 1
# 192.168.0.8 1 1
# 192.168.0.9 1 1
# 192.168.1.1 0 1
# 192.168.1.2 0 1
# 192.168.1.3 0 1
# 192.168.1.4 0 1
这也是一个重塑的解决方案
这个很酷的一点是,当你有两个以上的源向量时它可以工作:
df2 <- list(data.frame(a),data.frame(b)) %>%
lapply(. %>% transform(source = names(.)) %>% rename_("ip" = names(.)[1])) %>%
do.call(rbind,.) %>%
transform(v=1) %>%
reshape(idvar="ip",timevar="source",direction="wide",sep="") %>%
replace(.,is.na(.),0) %>%
setNames(gsub("v","",colnames(.))) %>%
set_rownames(.,`[`(.,,'ip')) %>% select(-ip)
# a b
# 192.168.0.1 1 0
# 192.168.0.2 1 0
# 192.168.0.3 1 0
# 192.168.0.4 1 0
# 192.168.0.5 1 1
# 192.168.0.6 1 1
# 192.168.0.7 1 1
# 192.168.0.8 1 1
# 192.168.0.9 1 1
# 192.168.0.10 1 1
# 192.168.1.1 0 1
# 192.168.1.2 0 1
# 192.168.1.3 0 1
# 192.168.1.4 0 1
2 个向量的所有解决方案的基准
让我们对迄今为止提供的解决方案进行基准测试。我使用from和from添加了我的第一个解决方案的data.table
变体以及我的第二个解决方案的变体dcast
reshape2
spread
tidyR
microbenchmark(
merge = merge(data.frame(ip=a,a=1), data.frame(ip=b,b=1),all=TRUE) %>%
set_rownames(.,`[`(.,,'ip')) %>% select(-ip) %>% replace(.,is.na(.),0),
merge_dt = merge(data.table(ip=a,a=1,key="ip"), data.table(ip=b,b=1,key="ip"),all=TRUE) %>%
as.data.frame %>% # to go back to desired output format
set_rownames(.,`[`(.,,'ip')) %>% select(-ip) %>% replace(.,is.na(.),0),
dcast = list(data.frame(a),data.frame(b)) %>%
lapply(. %>% transform(source = names(.)) %>% rename_("ip" = names(.)[1])) %>%
do.call(rbind,.) %>%
transform(v=1) %>%
dcast(ip ~ source,value.var="v") %>%
replace(.,is.na(.),0) %>%
setNames(gsub("v","",colnames(.))) %>%
set_rownames(.,`[`(.,,'ip')) %>% select(-ip),
spread = list(data.frame(a),data.frame(b)) %>%
lapply(. %>% transform(source = names(.)) %>% rename_("ip" = names(.)[1])) %>%
do.call(rbind,.) %>%
transform(v=1) %>%
spread(source,v) %>%
replace(.,is.na(.),0) %>%
setNames(gsub("v","",colnames(.))) %>%
set_rownames(.,`[`(.,,'ip')) %>% select(-ip),
reshape = list(data.frame(a),data.frame(b)) %>%
lapply(. %>% transform(source = names(.)) %>% rename_("ip" = names(.)[1])) %>%
do.call(rbind,.) %>%
transform(v=1) %>%
reshape(idvar="ip",timevar="source",direction="wide",sep="") %>%
replace(.,is.na(.),0) %>%
setNames(gsub("v","",colnames(.))) %>%
set_rownames(.,`[`(.,,'ip')) %>% select(-ip),
akrun = {lvl <- unique(c(a,b));mapply(table, list(a = factor(a, levels = lvl),b = factor(b, levels = lvl)))},
p_routh = {df <- data.frame("IP" = unique(c(a,b)));df2 <- df%>%mutate(a = ifelse(df$IP %in% a,1,0),b = ifelse(df$IP %in% b,1,0))},
d.b = {ALL <- unique(c(a,b));data.frame(sapply(list(a = a, b = b), function(x) as.numeric(ALL %in% x)), row.names = ALL)},
times = 100
)
对于给定的示例:
# Unit: microseconds
# expr min lq mean median uq max neval
# merge 2368.754 2670.8205 3866.2288 2942.6280 3685.1415 38459.947 100
# merge_dt 4220.084 4702.4700 5547.1978 5222.3705 6239.1685 9170.293 100
# dcast 6153.875 6870.3760 9031.8770 7521.7570 8793.9045 46529.917 100
# spread 4329.090 4814.6610 6023.5993 5313.3275 6301.9890 38972.416 100
# reshape 4376.514 5007.1905 5995.1480 5694.1395 6811.4495 8744.180 100
# akrun 238.893 304.3680 366.0376 327.7265 416.3815 654.744 100
# p_routh 1013.967 1190.9255 1418.8037 1296.7450 1651.7220 2162.775 100
# d.b 133.072 183.8595 228.7220 207.0415 278.1780 417.974 100
举个更大的例子:140E6 的基准测试有点多,所以我尝试使用 1E5。我随意选择了 a 和 b 之间大约 50% 的重叠。
n <- 1E5
set.seed(1)
a <- sample(2*n,n)
b <- sample(2*n,n)
我运行基准测试 10 次
# Unit: milliseconds
# expr min lq mean median uq max neval
# merge 582.41885 617.4348 676.40615 651.84618 698.1091 911.8320 10
# merge_dt 98.72318 100.6648 114.72754 103.57925 119.9722 176.5360 10
# dcast 267.51729 347.8337 366.85554 360.17472 411.5002 454.1912 10
# spread 425.26005 447.7959 471.03577 477.02525 490.0484 502.8333 10
# reshape 697.14005 738.6921 763.31876 751.01547 791.3207 818.0778 10
# akrun 791.00964 815.5621 838.08296 832.31382 849.5231 923.6849 10
# p_routh 78.77724 82.8646 98.38296 84.34238 101.7304 151.0339 10
# d.b 191.00546 194.5754 209.02133 200.35484 207.1666 279.7900 10
我们看到 P Routh 的解对于 2 个向量是最快的,并且dcast
是最快的一般解。merge
然而,对于 140E6 行, withdata.table
可能是最快的。
一般解决方案
Hopefulle 最终编辑:
我根据我最好的受限解决方案设计了 2 个通用解决方案,并在 3 个大小为 10E6 的向量上运行它们。
merge_dt_gen <- function(...){
args <- as.character(substitute(list(...)))[-1]
dts <- args %>% lapply(.%>% data.table(ip=get(.),key="ip"))
all_ips <- data.table(ip = unique(c(...)),key="ip") # all_ips <- data.table(ip = unique(c(a,b)))
for(dt in dts){
all_ips <- merge(all_ips,dt,all.x = TRUE,by="ip")
}
all_ips %>%
as.data.frame %>%
set_rownames(.,`[`(.,,'ip')) %>%
select(-ip) %>%
setNames(args) %>%
replace(.,!is.na(.),1) %>%
replace(.,is.na(.),0)
}
d_cast_gen <- function(...){
args <- as.character(substitute(list(...)))[-1]
args %>%
lapply(.%>% data.frame(get(.)) %>% setNames(c("src","ip"))) %>%
do.call(rbind,.) %>%
transform(v=1) %>%
dcast(ip ~ src,value.var="v") %>%
replace(.,is.na(.),0) %>%
setNames(gsub("v","",colnames(.))) %>%
set_rownames(.,`[`(.,,'ip')) %>% select(-ip)
}
n <- 10E6
set.seed(1)
a <- sample(2*n,n)
b <- sample(2*n,n)
d <- sample(unique(a,b),n)
microbenchmark(
d_cast_gen = d_cast_gen(a,b,d),
merge_dt_gen = merge_dt_gen(a,b,d),
times = 1
)
# Unit: seconds
# expr min lq mean median uq max neval
# d_cast_gen 70.99771 70.99771 70.99771 70.99771 70.99771 70.99771 1
# merge_dt_gen 47.41809 47.41809 47.41809 47.41809 47.41809 47.41809 1
merge
withdata.table
是最快的