我的问题是我想在 python 中使用 xarray-library 的简单功能,但是在聚合数据的情况下我遇到了时间维度的问题。
我打开了一个数据集,其中包含 2013 年的每日数据:
datset=xr.open_dataset(filein)
.
该文件的内容是:
<xarray.Dataset>
Dimensions: (bnds: 2, rlat: 228, rlon: 234, time: 365)
Coordinates:
* rlon (rlon) float64 -28.24 -28.02 -27.8 -27.58 -27.36 -27.14 ...
* rlat (rlat) float64 -23.52 -23.3 -23.08 -22.86 -22.64 -22.42 ...
* time (time) datetime64[ns] 2013-01-01T11:30:00 ...
Dimensions without coordinates: bnds
Data variables:
rotated_pole |S1 ''
time_bnds (time, bnds) float64 1.073e+09 1.073e+09 1.073e+09 ...
ASWGLOB_S (time, rlat, rlon) float64 nan nan nan nan nan nan nan nan ...
Attributes:
CDI: Climate Data Interface version 1.7.0 (http://m...
Conventions: CF-1.4
references: http://www.clm-community.eu/
NCO: 4.6.7
CDO: Climate Data Operators version 1.7.0
当我现在使用 groupby 方法计算每月平均值时,时间维度被破坏:
datset.groupby('time.month')
<xarray.core.groupby.DatasetGroupBy object at 0x246a250>
>>> datset.groupby('time.month').mean('time')
<xarray.Dataset>
Dimensions: (bnds: 2, month: 12, rlat: 228, rlon: 234)
Coordinates:
* rlon (rlon) float64 -28.24 -28.02 -27.8 -27.58 -27.36 -27.14 ...
* rlat (rlat) float64 -23.52 -23.3 -23.08 -22.86 -22.64 -22.42 -22.2 ...
* month (month) int64 1 2 3 4 5 6 7 8 9 10 11 12
Dimensions without coordinates: bnds
Data variables:
time_bnds (month, bnds) float64 1.074e+09 1.074e+09 1.077e+09 1.077e+09 ...
ASWGLOB_S (month, rlat, rlon) float64 nan nan nan nan nan nan nan nan ...
现在我有一个值从 1 到 12 的月份维度而不是时间维度。这是“平均”函数的副作用吗?只要我不使用这个均值函数,时间变量就会被保留。
我做错了什么?文档和这个论坛中给出的例子似乎有不同的行为。在那里,除了使用每个月的第一个日期外,会保留时间戳。
我可以重塑我的旧时代维度吗?如果我想要时间戳指示月中,'time_bounds' 指示每个平均值的间隔,即月初,月底。
谢谢你的帮助,罗尼