0

我刚开始学习MATLAB。练习的目的是使用 Simpson 的 1/3 规则和 romberg 进行近似/积分。问题是将 x^(1/2) 从 0 积分到 2

当我执行时: simpson(fun,0,2,10)

fun = x^(1/2); 我在第 2 行:或在 simpson 的第 16行收到错误:f = feval(fun,x);

谢谢您的帮助!

这是我的方程式代码:

function [fun] = ff(x)
    fun = x^(1/2);
end

我的辛普森代码:

function I = simpson(fun,a,b,npanel)

% Multiple Segment Simpson's rule
%
% Synopsis:  I = simpson(fun,a,b,npanel)
%
% Input:     fun    = (string) name of m-file that evaluates f(x)
%            a, b   = lower and upper limits of the integral
%            npanel = number of panels to use in the integration
%                     Total number of nodes = 2*npanel + 1
%
% Output:    I = approximate value of the integral from a to b of f(x)*dx

n = 2*npanel + 1;    %  total number of nodes
h = (b-a)/(n-1);     %  stepsize
x = a:h:b;           %  divide the interval
f = feval(fun,x);    %  evaluate integrand

I = (h/3)*( f(1) + 4*sum(f(2:2:n-1)) + 2*sum(f(3:2:n-2)) + f(n) );
%           f(a)         f_even              f_odd         f(b)

我的 romberg 代码:

function [R,quad,err,h]=romberg(fun,a,b,n,tol)
%Input  - fun is the integrand input as a string 'fun'
%       - a and b are upper and lower limits of integration
%       - n is the maximum number of rows in the table
%       - tol is the tolerance
%Output - R is the Romberg table
%       - quad is the quadrature value
%       - err is the error estimate
%       - h is the smallest step size used

M=1;
h=b-a;
err=1;
J=0;
R=zeros(4,4);
R(1,1)=h*(feval(fun,a)+feval(fun,b))/2;

while((err>tol)&(J<n))|(J<4)

   J=J+1;
   h=h/2;
   s=0;
   for p=1:M
       x=a+h*(2*p-1);
       s=s+feval(fun,x);
   end
   R(J+1,1)=R(J,1)/2+h*s;
   M=2*M;
   for K=1:J
       R(J+1,K+1)=R(J+1,K)+(R(J+1,K)-R(J,K))/(4^K-1);
   end
   err=abs(R(J,J)-R(J+1,K+1));
end

quad=R(J+1,J+1);
4

0 回答 0