2

我已经实现了一个用于分类的具有 1 个隐藏层的神经网络。它使用sigmoid activation函数和cross entropy损失。但是在观看 cs231n 讲座时,我遇到了relu activation收敛速度更快的函数。因此,我对隐藏层使用了 relu 激活,但准确度30-40%90%. 以前我一直在努力使用 relu,因为cost function总是倾向于infinity因为 relu 的输出可以为 0。我通过始终在log.

以下是我从之前使用 sigmoid 激活的版本中修改的最重要的代码片段。我无法突出显示我已更改的部分,因此我添加了#changed评论。如果有人想仔细看看,我会完整的代码。

片段:

激活函数:

def relu(arg):  #I have tried both relu and leaky relu
    return 1*(arg<0)*0.0001*arg + (arg>=0)*arg

def reluGrad(arg):
    for i in range(arg.shape[0]):
        for j in range(arg.shape[1]):
            if arg[i][j]>0:
                arg[i][j]=1
            else:
                arg[i][j]=0
    return arg
def softmax(x):
    x = x.transpose()
    e_x = np.exp(x - np.max(x))
    return (e_x / e_x.sum(axis=0)).transpose()

前向道具:

a1 = np.insert(data,0,np.ones(len(data)),1).astype(np.float64)
    z2 = a1.dot(theta1)
    a2 = relu(z2) #changed
    a2 = np.insert(a2,0,np.ones(len(a2)),1)
    z3 = a2.dot(theta2)
    a3 = softmax(z3) #changed

计算成本:

cost = -(output*(np.log(a3))+(1-output)*(np.log(1-a3))).sum()
cost = (1/len(data))*cost + (lamb/(2*len(data)))*((np.delete(theta1,0,0)**2).sum() + (np.delete(theta2,0,0)**2).sum())

支持:

sigma3 = a3-output
sigma2 = (sigma3.dot(np.transpose(theta2)))* reluGrad(np.insert(z2,0,np.ones(len(z2)),1)) #changed
sigma2 = np.delete(sigma2,0,1)
delta2 = (np.transpose(a2)).dot(sigma3)
delta1 = (np.transpose(a1)).dot(sigma2)

grad1 = delta1/len(data) + (lamb/len(data))*np.insert(np.delete(theta1,0,0),0,np.zeros(len(theta1[0])),0)
grad2 = delta2/len(data) + (lamb/len(data))*np.insert(np.delete(theta2,0,0),0,np.zeros(len(theta2[0])),0)

#更新θ

theta1 = theta1 - alpha*grad1
theta2 = theta2 - alpha*grad2

为什么准确率会下降?这个 relu 函数的实现有什么问题?

4

0 回答 0