如果您查看 的代码库psych
,特别是 ,pairs.panels
您会看到它使用基础图形来完成工作,并在那里绘制所有元素。不依赖于ggplot2
. 基础文件于 2007 年形成。
我认为您将不得不继续使用保存图像的方式,例如png()
您是否致力于使用此软件包。从理论上讲,可以分叉并尝试移植.....
不确定您要做什么,但如果您要进行成对比较,另一种选择是利用其他库。
例如:
ggcorplot在 2011 年由达尔豪西大学的 Mike Lawrence 编写(但比pairs.panels.R更新了 4 年)使用ggplot2
.
library(ggplot2)
#define a helper function (borrowed from the "ez" package)
ezLev=function(x,new_order){
for(i in rev(new_order)){
x=relevel(x,ref=i)
}
return(x)
}
ggcorplot = function(data,var_text_size,cor_text_limits){
# normalize data
for(i in 1:length(data)){
data[,i]=(data[,i]-mean(data[,i]))/sd(data[,i])
}
# obtain new data frame
z=data.frame()
i = 1
j = i
while(i<=length(data)){
if(j>length(data)){
i=i+1
j=i
}else{
x = data[,i]
y = data[,j]
temp=as.data.frame(cbind(x,y))
temp=cbind(temp,names(data)[i],names(data)[j])
z=rbind(z,temp)
j=j+1
}
}
names(z)=c('x','y','x_lab','y_lab')
z$x_lab = ezLev(factor(z$x_lab),names(data))
z$y_lab = ezLev(factor(z$y_lab),names(data))
z=z[z$x_lab!=z$y_lab,]
#obtain correlation values
z_cor = data.frame()
i = 1
j = i
while(i<=length(data)){
if(j>length(data)){
i=i+1
j=i
}else{
x = data[,i]
y = data[,j]
x_mid = min(x)+diff(range(x))/2
y_mid = min(y)+diff(range(y))/2
this_cor = cor(x,y)
this_cor.test = cor.test(x,y)
this_col = ifelse(this_cor.test$p.value<.05,'<.05','>.05')
this_size = (this_cor)^2
cor_text = ifelse(
this_cor>0
,substr(format(c(this_cor,.123456789),digits=2)[1],2,4)
,paste('-',substr(format(c(this_cor,.123456789),digits=2)[1],3,5),sep='')
)
b=as.data.frame(cor_text)
b=cbind(b,x_mid,y_mid,this_col,this_size,names(data)[j],names(data)[i])
z_cor=rbind(z_cor,b)
j=j+1
}
}
names(z_cor)=c('cor','x_mid','y_mid','p','rsq','x_lab','y_lab')
z_cor$x_lab = ezLev(factor(z_cor$x_lab),names(data))
z_cor$y_lab = ezLev(factor(z_cor$y_lab),names(data))
diag = z_cor[z_cor$x_lab==z_cor$y_lab,]
z_cor=z_cor[z_cor$x_lab!=z_cor$y_lab,]
#start creating layers
points_layer = layer(
geom = 'point'
, data = z
, mapping = aes(
x = x
, y = y
)
)
lm_line_layer = layer(
geom = 'line'
, geom_params = list(colour = 'red')
, stat = 'smooth'
, stat_params = list(method = 'lm')
, data = z
, mapping = aes(
x = x
, y = y
)
)
lm_ribbon_layer = layer(
geom = 'ribbon'
, geom_params = list(fill = 'green', alpha = .5)
, stat = 'smooth'
, stat_params = list(method = 'lm')
, data = z
, mapping = aes(
x = x
, y = y
)
)
cor_text = layer(
geom = 'text'
, data = z_cor
, mapping = aes(
x=y_mid
, y=x_mid
, label=cor
, size = rsq
, colour = p
)
)
var_text = layer(
geom = 'text'
, geom_params = list(size=var_text_size)
, data = diag
, mapping = aes(
x=y_mid
, y=x_mid
, label=x_lab
)
)
f = facet_grid(y_lab~x_lab,scales='free')
o = opts(
panel.grid.minor = theme_blank()
,panel.grid.major = theme_blank()
,axis.ticks = theme_blank()
,axis.text.y = theme_blank()
,axis.text.x = theme_blank()
,axis.title.y = theme_blank()
,axis.title.x = theme_blank()
,legend.position='none'
)
size_scale = scale_size(limits = c(0,1),to=cor_text_limits)
return(
ggplot()+
points_layer+
lm_ribbon_layer+
lm_line_layer+
var_text+
cor_text+
f+
o+
size_scale
)
}
#set up some fake data
library(MASS)
N=100
#first pair of variables
variance1=1
variance2=2
mean1=10
mean2=20
rho = .8
Sigma=matrix(c(variance1,sqrt(variance1*variance2)*rho,sqrt(variance1*variance2)*rho,variance2),2,2)
pair1=mvrnorm(N,c(mean1,mean2),Sigma,empirical=T)
#second pair of variables
variance1=10
variance2=20
mean1=100
mean2=200
rho = -.4
Sigma=matrix(c(variance1,sqrt(variance1*variance2)*rho,sqrt(variance1*variance2)*rho,variance2),2,2)
pair2=mvrnorm(N,c(mean1,mean2),Sigma,empirical=T)
my_data=data.frame(cbind(pair1,pair2))
ggcorplot(
data = my_data
, var_text_size = 30
, cor_text_limits = c(2,30)
)
示例用法和输出:
ggcorplot(
data = iris[1:4],
var_text_size = 5,
cor_text_limits = c(5,10))
产量