我知道这个错误是反复出现的,我知道是什么原因造成的。例如,用 163 张 150x150 的图像运行这个模型会给我错误(但是我不清楚为什么设置 batch_size Keras 似乎仍然试图在 GPU 中一次分配所有图像):
model = Sequential()
model.add(Conv2D(64, kernel_size=(6, 6), activation='relu', input_shape=input_shape, padding='same', name='b1_conv'))
model.add(MaxPooling2D(pool_size=(2, 2), name='b1_poll'))
model.add(Conv2D(128, kernel_size=(6, 6), activation='relu', padding='same', name='b2_conv'))
model.add(MaxPooling2D(pool_size=(2, 2), name='b2_pool'))
model.add(Conv2D(256, kernel_size=(6, 6), activation='relu', padding='same', name='b3_conv'))
model.add(MaxPooling2D(pool_size=(2, 2), name='b3_pool'))
model.add(Flatten())
model.add(Dense(500, activation='relu', name='fc1'))
model.add(Dropout(0.5))
model.add(Dense(500, activation='relu', name='fc2'))
model.add(Dropout(0.5))
model.add(Dense(n_targets, activation='softmax', name='prediction'))
model.compile(optimizer=optim, loss='categorical_crossentropy', metrics=['accuracy'])
鉴于此,我将图像尺寸减小到 30x30(这导致精度下降,正如预期的那样)。但是,在此模型中运行网格搜索资源耗尽。
model = KerasClassifier(build_fn=create_model, verbose=0)
# grid initial weight, batch size and optimizer
sgd = optimizers.SGD(lr=0.0005)
rms = optimizers.RMSprop(lr=0.0005)
adag = optimizers.Adagrad(lr=0.0005)
adad = optimizers.Adadelta(lr=0.0005)
adam = optimizers.Adam(lr=0.0005)
adamm = optimizers.Adamax(lr=0.0005)
nadam = optimizers.Nadam(lr=0.0005)
optimizers = [sgd, rms, adag, adad, adam, adamm, nadam]
init = ['glorot_uniform', 'normal', 'uniform', 'he_normal']
batches = [32, 64, 128]
param_grid = dict(optim=optimizers, batch_size=batches, init=init)
grid = GridSearchCV(estimator=model, param_grid=param_grid)
grid_result = grid.fit(X_train, y_train)
# summarize results
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
我想知道是否有可能在网格搜索使用的每个组合之前“清理”一些东西(不确定我是否说清楚了,这对我来说是全新的)。
编辑
使用fit_generator
也给了我同样的错误:
def generator(features, labels, batch_size):
# Create empty arrays to contain batch of features and labels#
batch_features = np.zeros((batch_size, size, size, 1))
batch_labels = np.zeros((batch_size, n_targets))
while True:
for i in range(batch_size):
# choose random index in features
index = np.random.choice(len(features),1)
batch_features[i] = features[index]
batch_labels[i] = labels[index]
yield batch_features, batch_labels
sgd = optimizers.SGD(lr=0.0005)
rms = optimizers.RMSprop(lr=0.0005)
adag = optimizers.Adagrad(lr=0.0005)
adad = optimizers.Adadelta(lr=0.0005)
adam = optimizers.Adam(lr=0.0005)
adamm = optimizers.Adamax(lr=0.0005)
nadam = optimizers.Nadam(lr=0.0005)
optim = [rms, adag, adad, adam, adamm, nadam]
init = ['normal', 'uniform', 'he_normal']
combinations = [(a, b) for a in optim for b in init]
for combination in combinations:
init = combination[1]
optim = combination[0]
model = create_model(init=init, optim=optim)
model.fit_generator(generator(X_train, y_train, batch_size=32),
steps_per_epoch=X_train.shape[0] // 32,
epochs=100, verbose=0, validation_data=(X_test, y_test))
scores = model.model.evaluate(X_test, y_test, verbose=0)
print("%s: %.2f%% Model %s %s" % (model.model.metrics_names[1], scores[1]*100, optim, init))