0

我正在尝试使用 R 中的 NbClust 方法来确定集群分析中的最佳集群数量,遵循Manning书中的方法。但是,我收到一条错误消息:

hclust(md, method = "average") 中的错误:必须有 n >= 2 个对象才能聚类。

即使 hclust 方法似乎有效。因此,我认为问题是(错误消息也说明了这一点),NbClust 试图创建内部只有一个对象的组。

这是我的代码:

mydata = read.table("PLR_2016_WM_55_5_Familienstand_aufbereitet.csv", skip = 0, sep = ";", header = TRUE)

mydata <- mydata[-1] # Without first line (int)
data.transformed <- t(mydata) # Transformation of matrix
data.scale <- scale(data.transformed) # Scaling of table
data.dist <- dist(data.scale) # Calculates distances between points

fit.average <- hclust(data.dist, method = "average")
plot(fit.average, hang = -1, cex = .8, main = "Average Linkage Clustering")

library(NbClust)
nc <- NbClust(data.scale, distance="euclidean", 
          min.nc=2, max.nc=15, method="average") 

我在这里发现了类似的问题,但我无法调整代码。

4

1 回答 1

2

您的数据集中存在一些问题。
最后 4 行不包含数据,必须删除。

mydata <- read.table("PLR_2016_WM_55_5_Familienstand_aufbereitet.csv", skip = 0, sep = ";", header = TRUE)
mydata <- mydata[1:(nrow(mydata)-4),]
mydata[,1] <- as.numeric(mydata[,1])

现在重新调整数据集:

data.transformed <- t(mydata) # Transformation of matrix
data.scale <- scale(data.transformed) # Scaling of table

由于某种原因data.scale不是满秩矩阵:

dim(data.scale)
# [1]  72 447
qr(data.scale)$rank
# [1] 71

因此,我们从中删除一行data.scale并将其转置:

data.scale <- t(data.scale[-72,])

现在数据集准备好了NbClust

library(NbClust)
nc <- NbClust(data=data.scale, distance="euclidean", 
          min.nc=2, max.nc=15, method="average") 

输出是

[1] "Frey index : No clustering structure in this data set"
*** : The Hubert index is a graphical method of determining the number of clusters.
                In the plot of Hubert index, we seek a significant knee that corresponds to a 
                significant increase of the value of the measure i.e the significant peak in Hubert
                index second differences plot. 

*** : The D index is a graphical method of determining the number of clusters. 
                In the plot of D index, we seek a significant knee (the significant peak in Dindex
                second differences plot) that corresponds to a significant increase of the value of
                the measure. 

******************************************************************* 
* Among all indices:                                                
* 8 proposed 2 as the best number of clusters 
* 4 proposed 3 as the best number of clusters 
* 8 proposed 4 as the best number of clusters 
* 1 proposed 5 as the best number of clusters 
* 1 proposed 8 as the best number of clusters 
* 1 proposed 11 as the best number of clusters 

                   ***** Conclusion *****                            

* According to the majority rule, the best number of clusters is  2 

******************************************************************* 

在此处输入图像描述

于 2017-06-28T11:25:37.220 回答